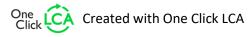


ENVIRONMENTAL PRODUCT DECLARATION


IN ACCORDANCE WITH EN 15804+A2 & ISO 14025 / ISO 21930

Message Series Asahi Woodtec Co., Ltd.

EPD HUB, HUB-1407

Published on 17.05.2024, last updated on 22.08.2024, valid until 17.05.2029

一般情報 - GENERAL INFORMATION

メーカー - MANUFACTURER

, , , , , , , , , , , , , , , , , , , ,	
メーカー名	Asahi Woodtec Co., Ltd.
Manufacturer	
住所	4-5-10 Minamihonmachi, Chuo-ku, Osaka City,
Address	Osaka
問い合わせ先	sakaes@woodtec.co.jp
Contact details	
ウェブサイト	https://www.woodtec.co.jp
Website	

EPD 規格、スコープ、認証機関 - EPD STANDARDS, SCOPE AND VERIFICATION

プログラムオペ	EPD Hub, hub@epdhub.com
レータ	
Program operator	
参照規格	EN 15804+A2:2019 and ISO 14025
Reference standard	
PCR	EPD Hub Core PCR Version 1.1, 5 Dec 2023
PCR	
製品カテゴリ	Construction product
Sector	
EPD カテゴリ	Third party verified EPD
Category of EPD	
EPD のスコープ	Cradle to gate with modules C1-C4, D
Scope of the EPD	
EPD 申請者	Satoshi Sakae
EPD author	
EPD 検証	Independent verification of this EPD and data,
EPD verification	according to ISO 14025:
	☐ Internal verification ☐ External verification

EPD検証	Haiha Nguyen, as an authorized verifier acting
EPD verifier	for EPD Hub Limited

The manufacturer has the sole ownership, liability, and responsibility for the EPD. EPDs within the same product category but from different programs may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804 and if they are not compared in a building context.

製品 - PRODUCT

2

製品名 Product name	Message Series
追加ラベル Additional labels	
参照製品 Product reference	PMT3KJ48KSS,PMT3KJ17KSS,PMT 3KJ02KSS,PMT3KJ05KSS,PMT3FKJ 05KSS,PMT5FKJ74KSS,PMT3KJ10 KSS,PMT5FKJ74KSS,PMT2DS48S,P MT2DS48RS,PMT2DS17S,PMT2D S17RS,PMT2DS02S,PMT2DS02RS, PMT2DS05S,PMT2DS05RS,PMT2 DS49RS,PMT2DS10S,PMT2DS53S, PMT2DSM0105S,PMT2DSM0205 S,PMT2DSM0305S,PMT2DSM040 5S,PMT2DSM0305S,PMT2DSM040 5S,PMT2DSM0505S,PBTA6DS48S, PBTA6DS48RS,PBTA6DS17S,PBTA 6DS17RS,PBTA6DS02S,PBTA6DS0 2RS,PBTA6DS05S,PBTA6DS05RS,P BTA6DS49RS,PBTA6DS10S,PBTA6 DS53S,PBTA6DSM0105S,PBTA6D SM0205S,PBTA6DSM0305S,PBTA 6DSM0405S,PBTA6DSM0505S,PB TAWDS48S,PBTA6DSM0505S,PB TAWDS48S,PBTAWDS48RS,PBTA

	WDS17S,PBTAWDS17RS,PBTAWD S02S,PBTAWDS02RS,PBTAWDS05 S,PBTAWDS05RS,PBTAWDS49RS, PBTAWDS10S,PBTAWDS53S				
製造地 Place of production	Niihama, Tadaoka-cho, Senboku- gun, Osaka				
Place of production	guri, Osaka				
データ取得年	1st April 2022~31st March 2023				
Period for data					
EPD 平均化	Multiple products 1.3 %				
Averaging in EPD					
A1-A3 の GWP-fossil 変動率					
Variation in GWP-fossil for A1-A3					

環境影響データ概要 - ENVIRONMENTAL DATA SUMMARY

来がある / M.女 - EIVINONIVEN	
宣言単位	1 m2
Declared unit	
宣言単位あたりの質量	7.926 kg
Declared unit mass	
GWP-fossil, A1-A3 (kgCO2e)	1,74E+01
GWP-fossil, A1-A3 (kgCO2e)	
GWP-total, A1-A3 (kgCO2e)	-5,95E+00
GWP-total, A1-A3 (kgCO2e)	
副資材の投入(%)	0.54
Secondary material, inputs (%)	
副資材のアウトプット(%)	100
Secondary material, outputs (%)	
エネルギー使用量計, A1-A3	
(kWh)	155
Total energy use, A1-A3 (kWh)	
水使用量計、A1-A3 (m3)	0.35
Net fresh water use, A1-A3 (m3)	

Message Series

3

製品とメーカー-PRODUCT AND MANUFACTURER

メーカーの概要 - ABOUT THE MANUFACTURER

Founded in 1952, Asahi Woodtec is a manufacturer and distributor of wooden interior building materials in Japan. With its origins in the lumber industry, the manufacturer aims to be a demand-creating manufacturer that maximises the potential of wood and provides innnovative value for peoples lives. As part of its decarbonisation efforts, it obtained SBT certification in April 2021, and joined the 100 Renewable Energy Declaration RE Action in May 2021.

製品説明 - PRODUCT DESCRIPTION

The product is an wooden interior flooring with 12mm of thickness which consists of facing lumber and plywood, from the surface. The facing lumber on the surface are variated among oak, walnut, cherry, maple, birch, ash, cypress, and sapele. The surface design makes use of the grain and character of natural wood. It has antiviral, anti bacterial, chemical and pollution resistance and indoor air quality performance. It is installed with adhesives and nails as an interior flooring material in public properties and houses. It is scratch-resistant and durable enough to be used on dirt floors.

Further information can be found at https://www.woodtec.co.jp.

主な原材料構成 - PRODUCT RAW MATERIAL MAIN COMPOSITION

原材料カテゴリ Raw material category	量、質量 - <mark>%</mark> Amount, mass- %	原材料源 Material origin
金属 Metals	0	
鉱物 Minerals	0	

化石原料 Fossil materials	3	Japan
バイオマス原料 Bio-based materials	97	China, Europe, Japan

生物起源 CO2 含有量 - BIOGENIC CARBON CONTENT

Product's biogenic carbon content at the factory gate

製品の生物起源 CO2 含有量、kg C Biogenic carbon content in product, kg C	4.1
梱包の生物起源 CO2 含有量、kg C Biogenic carbon content in packaging, kg C	0.0027

機能単位と耐用年数 - FUNCTIONAL UNIT AND SERVICE LIFE

宣言単位	1 m2
Declared unit	
宣言単位あたりの質量	7.926 kg
Mass per declared unit VP	
機能単位	
Functional unit	
参照耐用年数	
Reference service life	

化学物質、REACH 高懸念物質 - SUBSTANCES, REACH - VERY HIGH CONCERN

The product does not contain any REACH SVHC substances in amounts greater than 0,1 % (1000 ppm).

4

製品のライフサイクル - PRODUCT LIFE-CYCLE

システム境界 - SYSTEM BOUNDARY

This EPD covers the life-cycle modules listed in the following table.

Product stage				embl age		Use stage					E	nd of I	ife stag	ge	Beyo sy: bour	stem	1	
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4	D		
x	x	x	MN D	MN D	MN D					×								
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational	Operational water use	Deconstr./demol.	Transport	Waste processing	Disposal	Reuse	Recovery	Recycling

Modules not declared = MND. Modules not relevant = MNR.

製造と梱包 - MANUFACTURING AND PACKAGING (A1-A3)

The environmental impacts considered for the product stage cover the manufacturing of raw materials used in the production as well as packaging materials and other ancillary materials. Also, fuels used by machines, and handling of waste formed in the production processes at the manufacturing facilities are included in this stage. The study also considers the material losses occurring during the manufacturing processes as well as losses during electricity transmission.

The environmental impacts considered for the product stage cover the manufacturing of raw materials used in the production as well as packaging materials and other ancillary materials. Also, fuels used by machines, and handling of waste formed in the production processes at the manufacturing facilities are included in this stage. The study also considers the material losses occurring during the manufacturing processes as well as losses during electricity transmission. This product consists of plywood as substrate with being laminated with lumbers, processing dimensions and coating. Most of the wooden materialas are imported from overseas by container ship and then transported to the factory by truck. The finished

product also contains putty, paints or coatings. The main manufacturing processes are cutting, sandering, laminating, processing and coating. Facing lumber is applied after laminating plywood and then the laminated board is sandered, cut, processed and coated to be the a finished product. The finished product is packed in a cardboard box and shipped out. During the manufacturing processes, electricity, fuel oils and gas are consumed to operate machinery and equipment. Production losses from manufacturing are used as secondary fuel in a biomass boiler. Burnt residue of paints and adhesives are generated after the incineration. Adhesives are pre processed with some chemicals for final disposal.

輸送と据付 - TRANSPORT AND INSTALLATION (A4-A5)

Transportation impacts occurred from final products delivery to construction site (A4) cover fuel direct exhaust emissions, environmental impacts of fuel production, as well as related infrastructure emissions.

Transportation impacts occurred from final products delivery to construction site (A4) cover fuel direct exhaust emissions, environmental impacts of fuel production, as well as related infrastructure emissions. As A4-A5 is excluded from this study, packaging wastes are considered in the end-of-life stage.

製品使用とメンテナンス - PRODUCT USE AND MAINTENANCE (B1-B7) This EPD does not cover the use phase.

製品の廃棄・リサイクル段階 - PRODUCT END OF LIFE (C1-C4, D)

5

In this EPD, end-of-life scenarios are developed for each material categories. Energy considered for demolition of building (C1) is considered negligible and transportation distance and method to the treatment facility (C2) is assumed to be 50km by a truck in all scenarios.

Wooden materials:

At the end of its lifetime, a timber product can have several end of life scenario options. Because of the uncertainties surrounding waste disposal practices in the future, exact methods of disposal at the end of its lifetime is hard to determine. In this EPD, 100% of the product waste is assumed to be collected and incinerated for energy recovery. Electricity and heat recovered from the wood wastes are declared in module D as benefit.

As this EPD excludes A5, packaging wastes are declared in the EOL stage.

Paperboard (packaging):

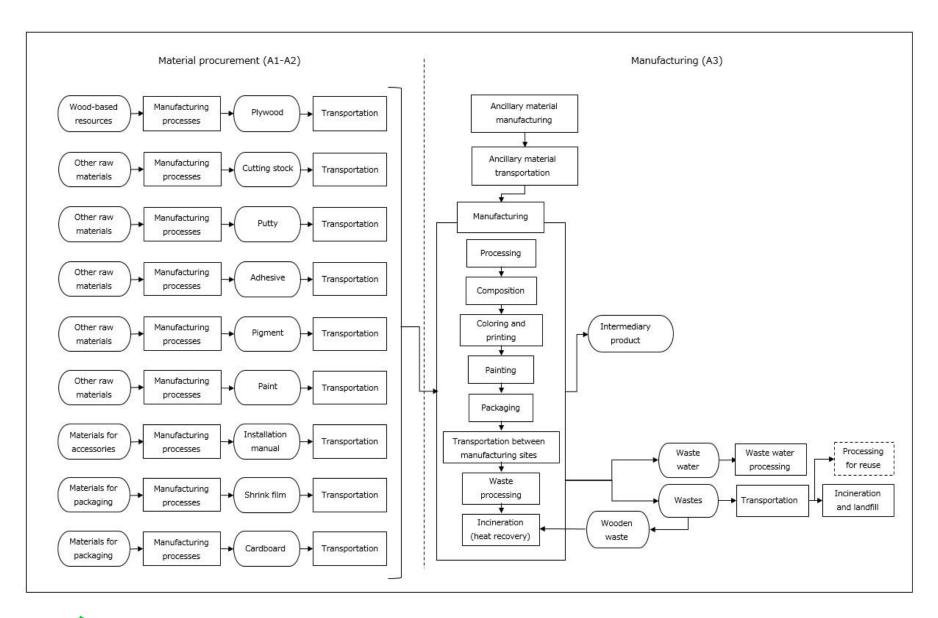
According to the website of Corrugated Packaging Recycling Council, 94.8% of the waste paperboard are collected at proper facilities. Therefore, EOL scenario of paperboard is assumed to be 94.8% recycled and 5.2% incinerated without energy recovery. Loads of processing for recycling and benefits of avoided virgin paperboard production are declared in module D.

Paper (instruction manual):

For paper wastes, EOL scenario is assumed to be 66.3% recycled and 33.7% incinerated according to the statistics published by Paper Recycling Promotion Center in Japan. Loads of processing for recycling and benefits of avoided virgin paper production are declared in module D.

Polyethylene film (packaging):

The EOL scenario is assumed to be 25% recycled, 57% energy recovery, 10% incinerated and 8% landfilled based on the report published by Ministry of Environment. Loads of processing for recycling and benefits of avoided virgin PE production and recovered energy are declared in module D.



6

製造プロセス - MANUFACTURING PROCESS

ライフサイクルアセスメント-LIFE-CYCLE

ASSESSMENT

カットオフ基準 - CUT-OFF CRITERIA

The study does not exclude any modules or processes which are stated mandatory in the reference standard and the applied PCR. The study does not exclude any hazardous materials or substances. The study includes all major raw material and energy consumption. All inputs and outputs of the unit processes, for which data is available for, are included in the calculation. There is no neglected unit process more than 1% of total mass or energy flows. The module specific total neglected input and output flows also do not exceed 5% of energy usage or mass.

配分、推定 - ALLOCATION, ESTIMATES AND ASSUMPTIONS

Allocation is required if some material, energy, and waste data cannot be measured separately for the product under investigation. All allocations are done as per the reference standards and the applied PCR. In this study, allocation has been done in the following ways:

データタイプ - Data type	配分 - Allocation
原材料 - Raw materials	Partly allocated by mass or volume
梱包材 - Packaging materials	Allocated by mass or volume
補助材料 - Ancillary materials	Allocated by mass or volume
製造エネルギーと廃棄物 - Manufacturing energy and waste	Allocated by mass or volume

平均値と変動率 - AVERAGES AND VARIABILITYVP

平均化の種類 - Type of average	Multiple products
平均化の方法 - Averaging method	Representative product
A1-A3 における GWP-fossil の変 動率 - Variation in GWP-fossil for A1-A3	1.3 %

This EPD covers two types of products: one is installed with adhesive for wood substrate and nails (without cushion sheet), and one is installed only with adhesive for concrete substrate (with cushion sheet). As the product for wooden substrate (without cushion) is much larger in production volume compared to the other one, LCA results of the product for wooden substrate (without cushion) are included in this EPD as a representative product. These two types of products are manufactured at the same production site, and have the same manufacturing processes up to the middle of the process, then sent to different finishing processes (latter processing~packaging) in the end. The variability of A1-A3 GWP-fossil between both products is about 1.3%.

LCA ソフトウェアと参考文献 - LCA SOFTWARE AND BIBLIOGRAPHY

8

This EPD has been created using One Click LCA EPD Generator. The LCA and EPD have been prepared according to the reference standards and ISO 14040/14044. Ecoinvent v3.8 and One Click LCA databases were used as sources of environmental data.

環境影響データ - ENVIRONMENTAL IMPACT DATA

主な環境影響指標 - CORE ENVIRONMENTAL IMPACT INDICATORS - EN 15804+A2, PEF

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	B6	B7	C1	C2	С3	C4	D
GWP – total ¹⁾	kg CO₂e	-1,30E+01	2,70E+00	4,38E+00	-5,95E+00	MND	MNR	5,65E-02	2,36E+01	1,84E-04	-2,08E+00								
GWP – fossil	kg CO₂e	1,20E+01	2,70E+00	2,72E+00	1,74E+01	MND	MNR	5,65E-02	1,59E-01	1,93E-04	-2,07E+00								
GWP – biogenic	kg CO₂e	-2,51E+01	0,00E+00	1,65E+00	-2,34E+01	MND	MNR	0,00E+00	2,34E+01	-9,25E-06	0,00E+00								
GWP – LULUC	kg CO₂e	4,00E-02	1,56E-03	1,05E-02	5,21E-02	MND	MNR	2,48E-05	4,50E-05	1,46E-08	-6,29E-03								
Ozone depletion pot.	kg CFC-11e	1,56E-06	5,53E-07	1,40E-07	2,25E-06	MND	MNR	1,25E-08	8,66E-09	4,17E-12	-4,47E-08								
Acidification potential	mol H⁺e	8,89E-02	3,62E-02	1,22E-02	1,37E-01	MND	MNR	3,11E-04	1,33E-03	1,19E-07	-1,02E-02								
EP-freshwater ²⁾	kg Pe	6,90E-04	1,99E-05	8,07E-05	7,90E-04	MND	MNR	4,96E-07	1,82E-06	2,29E-10	-5,95E-05								
EP-marine	kg Ne	2,53E-02	8,62E-03	1,93E-03	3,59E-02	MND	MNR	1,08E-04	6,26E-04	7,33E-08	-1,45E-03								
EP-terrestrial	mol Ne	2,81E-01	9,59E-02	2,13E-02	3,98E-01	MND	MNR	1,19E-03	6,65E-03	4,39E-07	-1,62E-02								
POCP ("smog") ³⁾	kg NMVOCe	8,16E-02	2,61E-02	6,56E-03	1,14E-01	MND	MNR	3,42E-04	1,64E-03	1,69E-07	-5,08E-03								
ADP-minerals & metals ⁴⁾	kg Sbe	6,86E-05	9,25E-06	4,29E-06	8,21E-05	MND	MNR	1,93E-07	4,17E-07	4,73E-11	-2,31E-06								
ADP-fossil resources	MJ	1,68E+02	3,69E+01	3,64E+01	2,41E+02	MND	MNR	8,32E-01	1,09E+00	3,20E-04	-2,65E+01								
Water use ⁵⁾	m³e depr.	1,64E+01	1,56E-01	7,32E-01	1,73E+01	MND	MNR	3,82E-03	5,32E-01	1,93E-06	-4,14E-03								

¹⁾ GWP = Global Warming Potential; 2) EP = Eutrophication potential. Required characterisation method and data are in kg P-eq. Multiply by 3,07 to get PO4e; 3) POCP = Photochemical ozone formation; 4) ADP = Abiotic depletion potential; 5) EN 15804+A2 disclaimer for Abiotic depletion and Water use and optional indicators except Particulate matter and Ionizing radiation, human health. The results of these environmental impact indicators shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

9

追加(オプション)の環境影響指標 - ADDITIONAL (OPTIONAL) ENVIRONMENTAL IMPACT INDICATORS – EN 15804+A2, PEF

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	B6	B7	C1	C2	C3	C4	D
Particulate matter	Incidence	1,80E-06	1,49E-07	5,61E-08	2,00E-06	MND	MNR	6,03E-09	1,59E-08	2,37E-12	-2,30E-08								
Ionizing radiation ⁶⁾	kBq U235e	3,75E+01	1,71E-01	2,05E-01	3,79E+01	MND	MNR	3,91E-03	2,52E-03	1,55E-06	-2,44E-01								
Ecotoxicity (freshwater)	CTUe	4,31E+02	3,16E+01	3,90E+01	5,02E+02	MND	MNR	7,73E-01	3,00E+00	3,43E-04	-2,03E+01								
Human toxicity, cancer	CTUh	7,25E-08	1,32E-09	9,69E-10	7,48E-08	MND	MNR	2,64E-11	3,68E-10	1,05E-14	-6,25E-10								
Human tox. non- cancer	CTUh	2,67E-07	2,55E-08	2,06E-08	3,13E-07	MND	MNR	7,86E-10	1,69E-08	2,03E-13	-1,08E-08								
SQP ⁷⁾	-	2,55E+03	1,64E+01	1,05E+01	2,58E+03	MND	MNR	7,13E-01	3,67E-01	7,71E-04	6,36E+00								

⁶⁾ EN 15804+A2 disclaimer for Ionizing radiation, human health. This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator; 7) SQP = Land use related impacts/soil quality.

天然資源の利用 - USE OF NATURAL RESOURCES

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
Renew. PER as energy ⁸⁾	MJ	3,47E+02	4,22E-01	3,43E+00	3,51E+02	MND	MNR	1,02E-02	2,96E-02	5,97E-06	3,61E-02								
Renew. PER as material	MJ	2,04E+02	0,00E+00	-1,35E+01	1,90E+02	MND	MNR	0,00E+00	-1,90E+02	0,00E+00	0,00E+00								
Total use of renew. PER	MJ	5,50E+02	4,22E-01	-1,00E+01	5,41E+02	MND	MNR	1,02E-02	-1,90E+02	5,97E-06	3,61E-02								
Non-re. PER as energy	MJ	1,35E+02	3,69E+01	3,57E+01	2,07E+02	MND	MNR	8,32E-01	1,09E+00	3,20E-04	-2,67E+01								
Non-re. PER as material	MJ	3,43E+01	0,00E+00	-2,56E+00	3,17E+01	MND	MNR	0,00E+00	-3,16E+01	-5,37E-02	0,00E+00								
Total use of non-re. PER	MJ	1,69E+02	3,69E+01	3,32E+01	2,39E+02	MND	MNR	8,32E-01	-3,06E+01	-5,34E-02	-2,67E+01								
Secondary materials	kg	4,30E-02	1,55E-02	8,01E-03	6,65E-02	MND	MNR	2,78E-04	2,63E-03	1,14E-07	1,58E-01								
Renew. secondary fuels	MJ	4,02E-03	1,52E-04	5,38E-04	4,71E-03	MND	MNR	3,40E-06	6,53E-06	4,39E-09	1,01E-04								
Non-ren. secondary fuels	MJ	1,47E-02	0,00E+00	0,00E+00	1,47E-02	MND	MNR	0,00E+00	0,00E+00	0,00E+00	0,00E+00								
Use of net fresh water	m³	3,27E-01	3,93E-03	2,30E-02	3,54E-01	MND	MNR	1,05E-04	-1,63E-03	3,43E-07	-5,21E-04								

⁸⁾ PER = Primary energy resources.

廃棄・リサイクル段階 — 廃棄 - END OF LIFE - WASTE

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	С3	C4	D
Hazardous waste	kg	8,78E-01	5,74E-02	1,86E-01	1,12E+00	MND	MNR	1,22E-03	6,17E-04	0,00E+00	-9,04E-02								
Non-hazardous waste	kg	1,63E+01	7,82E-01	2,54E+00	1,96E+01	MND	MNR	1,96E-02	7,96E+00	1,30E-03	-7,09E+01								
Radioactive waste	kg	3,20E-04	2,47E-04	7,04E-05	6,38E-04	MND	MNR	5,50E-06	9,82E-08	0,00E+00	-6,52E-05								

廃棄・リサイクル段階 — 出力フロー - END OF LIFE - OUTPUT FLOWS

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
Components for re-use	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	MNR	0,00E+00	0,00E+00	0,00E+00	0,00E+00								
Materials for recycling	kg	9,83E-04	0,00E+00	0,00E+00	9,83E-04	MND	MNR	0,00E+00	2,26E-01	0,00E+00	0,00E+00								
Materials for energy rec	kg	2,69E-03	0,00E+00	7,85E+00	7,85E+00	MND	MNR	0,00E+00	7,94E+00	0,00E+00	0,00E+00								
Exported energy	MJ	1,45E-02	0,00E+00	0,00E+00	1,45E-02	MND	MNR	0,00E+00	8,12E+01	0,00E+00	0,00E+00								

環境影響 - ENVIRONMENTAL IMPACTS - EN 15804+A1, CML / ISO 21930

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4	D
Global Warming Pot.	kg CO₂e	1,09E+01	2,68E+00	2,68E+00	1,63E+01	MND	MNR	5,60E-02	1,58E-01	1,57E-04	-2,03E+00								
Ozone depletion Pot.	kg CFC-11e	5,67E-07	4,38E-07	1,19E-07	1,12E-06	MND	MNR	9,92E-09	7,48E-09	3,31E-12	-3,50E-08								
Acidification	kg SO₂e	6,43E-02	2,91E-02	1,02E-02	1,04E-01	MND	MNR	2,35E-04	9,38E-04	9,02E-08	-8,61E-03								
Eutrophication	kg PO ₄ ³e	2,56E-02	3,73E-03	3,34E-03	3,27E-02	MND	MNR	5,54E-05	1,11E-03	7,25E-06	-1,80E-03								
POCP ("smog")	kg C ₂ H ₄ e	5,78E-03	8,51E-04	4,99E-04	7,13E-03	MND	MNR	7,85E-06	3,41E-05	2,84E-08	-3,63E-04								
ADP-elements	kg Sbe	6,17E-05	9,02E-06	4,18E-06	7,49E-05	MND	MNR	1,88E-07	3,77E-07	4,57E-11	-2,36E-06								
ADP-fossil	MJ	1,58E+02	3,69E+01	3,64E+01	2,31E+02	MND	MNR	8,32E-01	1,09E+00	3,20E-04	-2,65E+01								

検証報告 - VERIFICATION STATEMENT

本 EPD の検証プロセス - VERIFICATION PROCESS FOR THIS EPD

This EPD has been verified in accordance with ISO 14025 by an independent, third-party verifier by reviewing results, documents and compliancy with reference standard, ISO 14025 and ISO 14040/14044, following the process and checklists of the program operator for:

- This Environmental Product Declaration
- The Life-Cycle Assessment used in this EPD
- The digital background data for this EPD

Why does verification transparency matter? Read more online
This EPD has been generated by One Click LCA EPD generator, which has been verified and approved by the EPD Hub.

第三者検証報告 - THIRD-PARTY VERIFICATION STATEMENT

I hereby confirm that, following detailed examination, I have not established any relevant deviations by the studied Environmental Product Declaration (EPD), its LCA and project report, in terms of the data collected and used in the LCA calculations, the way the LCA-based calculations have been carried out, the presentation of environmental data in the EPD, and other additional environmental information, as present with respect to the procedural and methodological requirements in ISO 14025:2010 and reference standard.

I confirm that the company-specific data has been examined as regards plausibility and consistency; the declaration owner is responsible for its factual integrity and legal compliance.

I confirm that I have sufficient knowledge and experience of construction products, this specific product category, the construction industry, relevant standards, and the geographical area of the EPD to carry out this verification.

I confirm my independence in my role as verifier; I have not been involved in the execution of the LCA or in the development of the declaration and have no conflicts of interest regarding this verification.

HaiHa Nguyen, as an authorized verifier acting for EPD Hub Limited 17.05.2024

12

