

ENVIRONMENTAL PRODUCT DECLARATION

IN ACCORDANCE WITH EN 15804+A2 & ISO 14025 / ISO 21930

Lindab Vent Fittings Lindab Ltd., United Kingdom

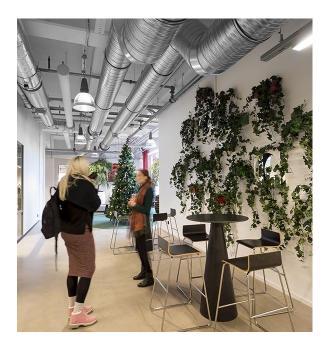
EPD HUB, HUB-1544

Publishing date 06 June 2024, last updated date 06 June 2024, valid until 06 June 2029

GENERAL INFORMATION

MANUFACTURER

Manufacturer	Lindab Ltd
Address	Lindab, Unit M Ashburton Point, Wheel Forge Way, Trafford Park, Manchester M17 1EH, Storbritannien, UK
Contact details	01604 788 350; sales@lindab.co.uk
Website	www.lindab.co.uk


EPD STANDARDS, SCOPE AND VERIFICATION

EPD Hub, hub@epdhub.com		
EN 15804+A2:2019 and ISO 14025		
EPD Hub Core PCR version 1.0, 1 Feb 2022		
Construction product		
Sister EPD to HUB-0837		
Cradle to gate with options, A4-A5, and modules C1-C4, D		
Alice Andersen		
Independent verification of this EPD and data, according to ISO 14025:		
□ Internal certification ☑ External verification		
Magaly González Vázquez, as an authorized verifier acting for EPD Hub Limited		

The manufacturer has the sole ownership, liability, and responsibility for the EPD. EPDs within the same product category but from different programs may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804 and if they are not compared in a building context.

PRODUCT

Product name	Lindab Vent fittings
Additional labels	AV, BF, BSF, EP, EPF, EPNF, HU, IL, MF, NP, PSK, PSV45, RCFL, RCL, RL, TB, TBS, TBSF, TCP, TV45, VENT, XTB, Y, YV45
Place of production	Manchester, UK
Period for data	Calendar year 2022
Averaging in EPD	Not applicable
Variation in GWP-fossil for A1-A3	-

More information on page 7.

ENVIRONMENTAL DATA SUMMARY

Declared unit	1 kg of Vent fitting
Declared unit mass	1 kg
GWP-fossil, A1-A3 (kgCO2e)	2.99
GWP-total, A1-A3 (kgCO2e)	2.99
Secondary material, inputs (%)	8.84
Secondary material, outputs (%)	95.0
Total energy use, A1-A3 (kWh)	8.06
Total water use, A1-A3 (m3e)	0.01

MANUFACTURER

ABOUT LINDAB

Lindab is a leading ventilation company in Europe, offering solutions for energy-efficient ventilation and a healthy indoor climate. The products are characterised by high quality, ease of installation and environmental thinking. In northern Europe, Lindab also offers an extensive range of roof, wall and rainwater systems.

FOR A BETTER CLIMATE

We want to create a better climate. Most of us spend the majority of our time indoors. The air we breathe, in our homes, at our workplaces and at school, affects our well-being. Since air is not visible, we do not always think about it. However, the indoor climate is crucial for how we feel, for our energy levels, and whether we stay healthy. Lindab wants to contribute to the architecture and indoor climate of tomorrow. We also want a better climate for our planet. That is why we develop energy-efficient solutions for healthy indoor environments

OUR VISION

We want to be the leading player in the area in which we are strongest – ventilation in Europe. We focus on air distribution and air diffusion. Since we offer high-quality products, we focus on Europe where demand for good ventilation is high, and we can offer superior availability. We specialise in those parts of the ventilation system where we are the strongest. We adapt our offering to the local market, with our core ventilation offering as the clear common denominator in all markets.

THE IMPORTANCE OF VENTILATION

About 90 percent of the global population breathes poor air every day. A common misconception is that outdoor air is more polluted due to emissions, smog, and harmful chemicals. In fact, indoor air in homes, schools, offices, and factories can be as much as five times more polluted. People nonetheless spend most of their life indoors. The most common causes of indoor air pollution are mould; chemicals in, for example, furniture and building materials; dust; radon; and cigarette smoke; but above all, airborne particles from combustion and industrial processes, which are so small they can enter the human bloodstream via the respiratory system. Today, air pollution is a risk factor in several of the world's most common causes of death, including heart disease, pneumonia, stroke, diabetes, and lung cancer. Ventilation is an efficient and convenient method to remove those indoor air pollutants.

SUSTAINABILITY PLAN

For us, sustainability is a way of thinking and working. This affects how we work with Lindab's strategy in all areas. Everything from the purchases we make, to the deliveries and the service we offer our customers. Lindab has three long-term, non-financial targets for the business, one that focuses on increasing our attractiveness as an employer, one for reducing our own carbon dioxide emissions, and one for a better working environment.

Read more about Lindab's sustainability work and non-financial targets on https://www.lindab.co.uk/For-a-better-climate/

STEEL - A SUSTAINABLE MATERIAL

Steel provides products with a long service life. Steel has many advantages over other materials – it has a very long service life, is non-combustible and meets hygiene requirements. Steel is a fully recyclable material and scrap steel has a strong market position: steel recovered from structures and end products at the end of their lifecycle is efficiently recycled and re-used. We prioritise cooperation with steel suppliers driving development towards fossil-free steel and whose carbon dioxide intensity values are good. The steel we use must be free of particularly hazardous substances.

The use of steel in Lindab's products is what contributes most to Lindab's CO₂ emissions. The transition to fossil-free steel is Lindab's most significant individual action in terms of its effect on the environment. Through our collaboration with SSAB and H2 Green Steel, we will also be among the first in Europe to have access to CO₂ reduced steel in 2026. When it becomes available, we will make use of it in a green product line.

PRODUCT

PRODUCT DESCRIPTION

Lindab fittings are made of galvanised steel used in the ventilation duct systems for air distribution. The fittings are typically bends, T-pieces, coupling and reducers.

The fittings covered by this EPD are named Vent fittings, which are fittings without rubber gaskets, while Safe fittings are with rubber gaskets for air tightness.

The fittings are produced according to EN1506 and EN12237 and are installed using screws or rivels.

Further information can be found at https://www.lindab.co.uk.

Figure 1 Illustration of examples of Vent fittings.

PRODUCT RAW MATERIAL MAIN COMPOSITION VP

Raw material category	Amount, mass- %	Material origin
Metals	100	EU
Minerals	-	-
Fossil materials	-	-
Bio-based materials	-	-

BIOGENIC CARBON CONTENT VP

Product's biogenic carbon content at the factory gate

Biogenic carbon content in product, kg C	0	
Biogenic carbon content in packaging, kg C	0	

FUNCTIONAL UNIT AND SERVICE LIFE

Declared unit	1 kg of Vent fitting
Mass per declared unit	1 kg
Functional unit	-
Reference service life	The reference service life of the product is highly dependent on the conditions of use, average lifespan under normal conditions is minimum 50 years. This is an estimated value based on experience and scientific facts about steel.

SUBSTANCES, REACH - VERY HIGH CONCERN

The product does not contain any REACH SVHC substances in amounts greater than 0,1 % (1000 ppm).

PRODUCT LIFE-CYCLE

SYSTEM BOUNDARY

This EPD covers the life-cycle modules listed in the following table.

Pro	Product stage			embly age		Use stage End of life stage					yond t systen undar	า						
A1	A2	A3	A4	A5	B1	B2	В3	B4	B5	B6	B7	C1	C2	C3	C4		D	
х	х	х	х	х	MND	MND	MND	MND	MND	MND	MND	х	х	х	х		х	
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstr./demol.	Transport	Waste processing	Disposal	Reuse	Recovery	Recycling

Modules not declared = MND. Modules not relevant = MNR.

MANUFACTURING AND PACKAGING (A1-A3)

The environmental impacts considered for the product stage cover the manufacturing of raw materials used in the production as well as packaging materials and other ancillary materials. Also, fuels used by machines, and generated in the production processes, are included in this stage. The study also considers the material losses occurring during the manufacturing processes as well as losses during electricity transmission.

The steel raw material is received, and goods inwards control is performed. The unique ID number is connected to the manufacturing order for traceability.

The production of the fittings ensures that the waste is kept to a minimum. For example, the bigger cut-offs are utilised to produce smaller fittings.

The produced fittings are placed in a steel stillage, labelled with the manufacturing order number. Fittings are picked in the warehouse and sent to the branches by trucks. The stillages are reused and going back and forward to between the warehouse and the branches by trucks. It reduces the amount of packaging.

Figure 2 Illustration of a steel stillage that carries the fittings.

TRANSPORT AND INSTALLATION (A4-A5)

Transportation impacts occurred from final products delivery to construction site (A4) cover fuel direct exhaust emissions, environmental impacts of fuel production, as well as related infrastructure emissions. Installation spills and handling of packaging material is considered. Material loss during installation is estimated to be zero as the products are delivered in a ready to install condition. The steel stillages are sent back to the production of Lindab to be reused for packaging of new deliveries (A5).

Transport from production place to user (A4)

Туре	Destination	Transportation method
Transportation	300	Lorry

PRODUCT USE AND MAINTENANCE (B1-B7)

This EPD does not cover the use phase. These life cycle stages are dependent on how the product is used and should be developed and included as part of a holistic assessment of specific construction works.

PRODUCT END OF LIFE (C1-C4, D)

The ventilation fittings are assumed to be dismantled using hand tools (C1) and transported 50 km to a local recycling centre (C2). The product is then dismantled assuming average recovery of materials of 95% (according to World Steel Association, 2017) (C3). That is to be seen as the proportion of the material in the product that will be recycled (or re-used) in a subsequent system. It is assumed that the remaining 5% steel is taken to landfill for disposal (C4). Due to the recycling process, the recycled metals are credited an avoided production of primary steel (D).

Transport to waste processing scenario (C2)

Туре	Destination	Transportation method
Transportation	20 km	Lorry

MANUFACTURING PROCESS

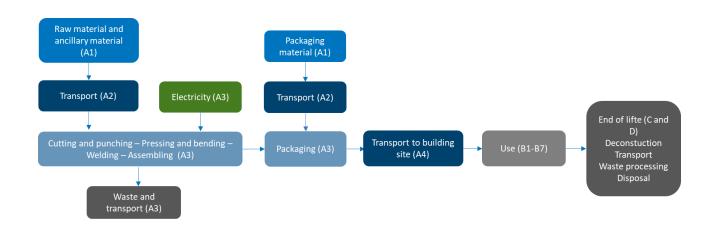


Figure 3 Manufacturing flowchart.

LIFE-CYCLE ASSESSMENT

CUT-OFF CRITERIA

The study does not exclude any modules or processes which are stated mandatory in the reference standard and the applied PCR. The study does not exclude any hazardous materials or substances. The study includes all major raw material and energy consumption. All inputs and outputs of the unit processes, for which data is available for, are included in the calculation.

There is no neglected unit process more than 1% of total mass or energy flows. The module specific total neglected input and output flows also do not exceed 5% of energy usage or mass.

ALLOCATION. ESTIMATES AND ASSUMPTIONS

Allocation is required if some material, energy, and waste data cannot be measured separately for the product under investigation. All allocations are done as per the reference standards and the applied PCR. In this study, allocation has been done in the following ways:

Data type	Allocation
Raw materials	No allocation
Packaging materials	No allocation
Ancillary materials	No allocation
Manufacturing energy and waste	Allocated by mass or volume

AVERAGES AND VARIABILITY

Type of average	No averaging
Averaging method	Not applicable
Variation in GWP-fossil for A1-A3	-

This EPD is product and factory specific and does not contain average calculations.

LCA SOFTWARE AND BIBLIOGRAPHY

This EPD has been created using One Click LCA EPD Generator. The LCA and EPD have been prepared according to the reference standards and ISO 14040/14044. Data from Arcelor has been used to represent the raw material. For other inputs Ecoinvent and One Click LCA databases were used as sources of environmental data.

ENVIRONMENTAL IMPACT DATA

CORE ENVIRONMENTAL IMPACT INDICATORS - EN 15804+A2, PEF

IMPACT CATEGORY	UNIT	A 1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
GWP - TOTAL ¹⁾	kg CO₂e	2,86E+00	1,18E-01	1,42E-02	2,99E+00	3,32E-02	5,07E-03	MND	3,31E-05	4,70E-03	1,45E-02	-7,38E-05	-1,44E+00						
GWP - FOSSIL	kg CO₂e	2,85E+00	1,18E-01	1,48E-02	2,99E+00	3,32E-02	5,07E-03	MND	3,31E-05	4,69E-03	2,08E-02	2,63E-04	-1,44E+00						
GWP - BIOGENIC	kg CO₂e	7,32E-03	3,34E-06	-5,65E-04	6,75E-03	0,00E+00	1,96E-06	MND	6,06E-09	1,81E-06	-6,32E-03	-3,37E-04	0,00E+00						
GWP - LULUC	kg CO₂e	3,26E-04	4,80E-05	1,96E-05	3,93E-04	1,23E-05	1,87E-06	MND	3,30E-09	1,73E-06	2,73E-05	2,49E-07	-2,83E-04						
OZONE DEPLETION POT.	kg CFC-11e	4,39E-12	2,62E-08	1,14E-09	2,73E-08	7,64E-09	1,17E-09	MND	7,07E-12	1,08E-09	2,57E-09	1,07E-10	-4,66E-08						
ACIDIFICATION POTENTIAL	mol H⁺e	5,65E-03	4,90E-04	6,43E-05	6,21E-03	1,41E-04	2,15E-05	MND	3,44E-07	1,99E-05	2,64E-04	2,48E-06	-7,11E-03						
EP-FRESHWATER ²⁾	kg Pe	3,90E-06	9,90E-07	3,82E-07	5,27E-06	2,72E-07	4,15E-08	MND	1,10E-10	3,84E-08	1,12E-06	2,76E-09	-8,67E-05						
EP-MARINE	kg Ne	1,35E-03	1,43E-04	1,48E-05	1,50E-03	4,18E-05	6,38E-06	MND	1,52E-07	5,90E-06	5,58E-05	8,57E-07	-1,38E-03						
EP-TERRESTRIAL	mol Ne	1,41E-02	1,58E-03	1,64E-04	1,59E-02	4,61E-04	7,04E-05	MND	1,67E-06	6,51E-05	6,45E-04	9,43E-06	-1,57E-02						
POCP ("SMOG") ³⁾	kg NMVOCe	4,63E-03	4,82E-04	4,36E-05	5,16E-03	1,48E-04	2,25E-05	MND	4,59E-07	2,08E-05	1,77E-04	2,74E-06	-7,47E-03						
ADP-MINERALS & METALS ⁴⁾	kg Sbe	0,00E+00	4,05E-07	2,83E-07	6,88E-07	7,79E-08	1,19E-08	MND	1,68E-11	1,10E-08	2,80E-06	6,05E-10	-2,60E-05						
ADP-FOSSIL RESOURCE	MJ	0,00E+00	1,72E+00	3,55E-01	2,07E+00	4,99E-01	7,61E-02	MND	4,45E-04	7,05E-02	2,82E-01	7,22E-03	-1,18E+01						
WATER USE ⁵⁾	m³e depr.	2,40E-01	7,53E-03	3,21E-03	2,50E-01	2,23E-03	3,41E-04	MND	1,20E-06	3,15E-04	5,47E-03	2,29E-05	-6,76E-01						

USE OF NATURAL RESOURCES

IMPACT CATEGORY	UNIT	A1	A2	A3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
RENEW. PER AS ENERGY ⁸⁾	MJ	1,52E+00	2,02E-02	6,28E-02	1,60E+00	5,62E-03	8,57E-04	MND	2,54E-06	7,94E-04	5,00E-02	6,27E-05	-1,18E+00						
RENEW. PER AS MATERIAL	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
TOTAL USE OF RENEW. PER	MJ	1,52E+00	2,02E-02	6,28E-02	1,60E+00	5,62E-03	8,57E-04	MND	2,54E-06	7,94E-04	5,00E-02	6,27E-05	-1,18E+00						
NON-RE. PER AS ENERGY	MJ	2,54E+01	1,72E+00	3,52E-01	2,74E+01	4,99E-01	7,61E-02	MND	4,45E-04	7,05E-02	2,82E-01	7,22E-03	-1,18E+01						
NON-RE. PER AS MATERIAL	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
TOTAL USE OF NON- RE. PER	MJ	2,54E+01	1,72E+00	3,52E-01	2,74E+01	4,99E-01	7,61E-02	MND	4,45E-04	7,05E-02	2,82E-01	7,22E-03	-1,18E+01						
SECONDARY MATERIALS	kg	8,84E-02	5,61E-04	1,80E-01	2,69E-01	1,39E-04	2,11E-05	MND	1,74E-07	1,96E-05	3,14E-04	1,52E-06	5,77E-01						
RENEW. SECONDARY FUELS	MJ	0,00E+00	7,17E-06	1,56E-06	8,74E-06	1,40E-06	2,13E-07	MND	5,70E-10	1,97E-07	1,63E-05	3,96E-08	0,00E+00						
NON-REN. SECONDARY FUELS	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
USE OF NET FRESH WATER	m ³	6,46E-03	2,04E-04	7,78E-05	6,74E-03	6,46E-05	9,86E-06	MND	2,70E-08	9,13E-06	1,65E-04	7,90E-06	-9,96E-03						

END OF LIFE - WASTE

IMPACT CATEGORY	UNIT	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	В5	В6	В7	C1	C2	С3	C4	D
HAZARDOUS WASTE	kg	1,68E-08	2,44E-03	9,51E-04	3,39E-03	6,62E-04	1,01E-04	MND	5,96E-07	9,34E-05	1,92E-03	0,00E+00	-5,60E-01						
NON-HAZARDOUS WASTE	kg	1,25E-02	3,91E-02	1,45E-02	6,61E-02	1,09E-02	1,66E-03	MND	4,19E-06	1,54E-03	6,12E-02	5,00E-02	-4,71E+00						
RADIOACTIVE WASTE	Kg	2,85E-04	1,14E-05	3,00E-06	2,99E-04	3,34E-06	5,09E-07	MND	3,13E-09	4,71E-07	1,65E-06	0,00E+00	-2,20E-06						

END OF LIFE - OUTPUT FLOWS

IMPACT CATEGORY	UNIT	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	В5	В6	В7	C1	C2	C3	C4	D
COMPONENTS FOR RE-USE	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,80E-01	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
MATERIALS FOR RECYCLING	kg	0,00E+00	0,00E+00	1,34E-01	1,34E-01	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	9,50E-01	0,00E+00	0,00E+00						
MATERIALS FOR ENERGY REC	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
EXPORTED ENERGY	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						

ENVIRONMENTAL IMPACTS - EN 15804+A1, CML / ISO 21930

IMPACT CATEGORY	UNIT	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	B6	B7	C1	C2	C3	C4	D
GLOBAL WARMING POT.	kg CO₂e	2,77E+00	5,32E-03	1,46E-02	2,79E+00	3,29E-02	5,02E-03	MND	3,27E-05	4,64E-03	2,05E-02	2,58E-04	-1,38E+00						
OZONE DEPLETION POT.	kg CFC- 11e	5,62E-12	1,01E-09	9,81E-10	2,00E-09	6,05E-09	9,23E-10	MND	5,60E-12	8,55E-10	2,08E-09	8,43E-11	-4,06E-08						
ACIDIFICATION	kg SO₂e	4,94E-03	1,74E-05	5,14E-05	5,01E-03	1,09E-04	1,67E-05	MND	2,45E-07	1,54E-05	2,13E-04	1,87E-06	-5,85E-03						
EUTROPHICATION	kg PO ₄ ³e	5,11E-04	3,89E-06	1,72E-05	5,33E-04	2,49E-05	3,80E-06	MND	5,69E-08	3,52E-06	7,05E-05	4,03E-07	-3,99E-03						
POCP ("SMOG")	kg C ₂ H ₄ e	7,93E-04	6,84E-07	2,29E-06	7,96E-04	4,27E-06	6,51E-07	MND	5,36E-09	6,03E-07	8,07E-06	7,84E-08	-9,48E-04						
ADP-ELEMENTS	kg Sbe	1,41E-04	1,23E-08	2,83E-07	1,41E-04	7,54E-08	1,15E-08	MND	1,65E-11	1,07E-08	2,80E-06	5,96E-10	-2,60E-05						
ADP-FOSSIL	MJ	2,49E+01	8,20E-02	3,55E-01	2,54E+01	4,99E-01	7,61E-02	MND	4,45E-04	7,05E-02	2,82E-01	7,22E-03	-1,18E+01						

VERIFICATION STATEMENT

VERIFICATION PROCESS FOR THIS EPD

This EPD has been verified in accordance with ISO 14025 by an independent, third-party verifier by reviewing results, documents and compliancy with reference standard, ISO 14025 and ISO 14040/14044, following the process and checklists of the program operator for:

- This Environmental Product Declaration
- The Life-Cycle Assessment used in this EPD
- · The digital background data for this EPD

Why does verification transparency matter? Read more online

This EPD has been generated by One Click LCA EPD generator, which has been verified and approved by the EPD Hub.

THIRD-PARTY VERIFICATION STATEMENT

I hereby confirm that, following detailed examination, I have not established any relevant deviations by the studied Environmental Product Declaration (EPD), its LCA and project report, in terms of the data collected and used in the LCA calculations, the way the LCA-based calculations have been carried out, the presentation of environmental data in the EPD, and other additional environmental information, as present with respect to the procedural and methodological requirements in ISO 14025:2010 and reference standard.

I confirm that the company-specific data has been examined as regards plausibility and consistency; the declaration owner is responsible for its factual integrity and legal compliance.

I confirm that I have sufficient knowledge and experience of construction products, this specific product category, the construction industry, relevant standards, and the geographical area of the EPD to carry out this verification.

I confirm my independence in my role as verifier; I have not been involved in the execution of the LCA or in the development of the declaration and have no conflicts of interest regarding this verification.

Magaly González Vázquez, as an authorized verifier acting for EPD Hub Limited 06.06.2024

ANNEX: CONVERSION OF FITTING TO WEIGHT

Article name	Average weight (kg)
AV	6,29
BF	19,74
BSF	2,12
EP	2,21
EPF	7,49
EPNF	0,59
HU	2,61
IL	1,84
MF	0,47
NP	0,67
PSK	0,28
PSV45	1,26
RCFL	8,16
RCL	1,79
RL	3,51
ТВ	3,58
TBS	0,73
TBSF	0,62
TCP	3,68
TV45	1,81
VENT	19,00
XTB	1,81
Υ	7,45
YV45	3,20

	Article name	Average weight (kg)
4	All articles	0,80

