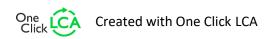


ENVIRONMENTAL PRODUCT DECLARATION


IN ACCORDANCE WITH EN 15804+A2 & ISO 14025 / ISO 21930

Quadcore RW Kingspan Insulated Panels Ltd.

EPD HUB, HUB-0290

Publishing date 17 February 2023, last updated on 6 March 2025, valid until 16 February 2028.

GENERAL INFORMATION

MANUFACTURER

Manufacturer	Kingspan Insulated Panels Ltd.
Address	Greenfield Business Park, 2 Bagillt Rd, Holywell CH8 7GJ
Contact details	SustainabilityTeam@kingspan.com
Website	https://www.kingspan.com/gb/en-gb

EPD STANDARDS, SCOPE AND VERIFICATION

Program operator	EPD Hub, hub@epdhub.com
Reference standard	EN 15804+A2:2019 and ISO 14025
PCR	EPD Hub Core PCR version 1.1, 5 Dec 2023
Sector	Construction product
Category of EPD	Third party verified EPD
Parent EPD number	-
Scope of the EPD	Cradle to gate with options, A4-A5, and modules C1-C4, D
EPD author	Becca Spurdle, Kingspan Insulated Panels
EPD verification	Independent verification of this EPD and data, according to ISO 14025: ☐ Internal verification ☑ External verification
EPD verifier	Magaly González Vázquez, as an authorized verifier acting for EPD Hub Limited

The manufacturer has the sole ownership, liability, and responsibility for the EPD. EPDs within the same product category but from different programs may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804 and if they are not compared in a building context.

PRODUCT

Product name	Quadcore KS1000 RW
Additional labels	-
Product reference	-
Place of production	Holywell, UK; Sherburn, UK; Kingscourt, Ireland.
Period for data	2021
Averaging in EPD	Multiple factories
Variation in GWP-fossil for A1-A3	<10%

ENVIRONMENTAL DATA SUMMARY

Declared unit	1m2 (100mm Thickness)
Declared unit mass	11.3 kg
GWP-fossil, A1-A3 (kgCO2e)	3.16E+01
GWP-total, A1-A3 (kgCO2e)	3.12E+01
Secondary material, inputs (%)	29.7
Secondary material, outputs (%)	60.3
Total energy use, A1-A3 (kWh)	148
Net fresh water use, A1-A3 (m3)	3.15

PRODUCT AND MANUFACTURER

ABOUT THE MANUFACTURER

Kingspan Insulated Panels is the world's largest and leading manufacturer of high-performance insulated panel systems. Offering a range of insulation cores from A-class mineral fibre to Kingspan's flagship QuadCore technology, we have a solution that suits all regulatory regimes while delivering a faster speed of construction with less labour when compared with traditional built-up systems. Kingspan's proprietary QuadCore technology provides building owners with excellent build quality and air tightness, underpinned by a guaranteed lifetime thermal performance.

We have a long term commitment to delivering a sustainable agenda as part of the Kingspan 10 year sustainability programme. Through Planet Passionate, we aim to impact climate change, circularity and protection of our natural world. We believe that through true collaboration we can help make a difference.

PRODUCT DESCRIPTION

QuadCore KS1000 RW Roof Panel is a through-fix profiled insulated roof panel, which can be used for building applications with roof pitches of 4° or more after deflection. The panel is available in a width of 1000 mm. Thanks to the prefabricated nature of the insulated panels, they are quicker to install than traditional roof structures, making the roof instantly wind and water-tight and significantly reducing construction risks.

QuadCore delivers leading thermal performance as it is more than twice as thermally efficient as mineral fibre, allowing thinner & lighter roofs. Further technical information is available on the Kingspan website in the product data sheet.

PRODUCT RAW MATERIAL MAIN COMPOSITION

Raw material category	Amount, mass- %	Material origin
Metals	64	EU
Minerals	-	-
Fossil materials	36	UK, DE, NL
Bio-based materials	-	-

BIOGENIC CARBON CONTENT

Product's biogenic carbon content at the factory gate

Biogenic carbon content in product, kg C	0
Biogenic carbon content in packaging, kg C	1.628

FUNCTIONAL UNIT AND SERVICE LIFE

Declared unit	1m2 (100mm Thickness)
Mass per declared unit	11.3 kg
Functional unit	-
Reference service life	-

SUBSTANCES, REACH - VERY HIGH CONCERN

3

The product does not contain any REACH SVHC substances in amounts greater than 0,1 % (1000 ppm).

Created with One Click LCA

PRODUCT LIFE-CYCLE

SYSTEM BOUNDARY

This EPD covers the life-cycle modules listed in the following table.

Pro	duct st	tage	Assembly stage				U	lse sta	e stage End d					End of life stage						
A1	A2	А3	A4	A5	B1	B1 B2 B3 B4 B5 B6 B7 C1 C2 C3 C							C4		es D					
x	x	x	x	x	MN D	MN D	MN D	MN D	MN D	MN D	MN D	x	x	x	x	x	x			
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstr./demol.	Transport	Waste processing	Disposal	Reuse	Recovery	Recycling		

Modules not declared = MND. Modules not relevant = MNR.

MANUFACTURING AND PACKAGING (A1-A3)

The environmental impacts considered for the product stage cover the manufacturing of raw materials used in the production as well as packaging materials and other ancillary materials. Also, fuels used by machines, and handling of waste formed in the production processes at the manufacturing facilities are included in this stage. The study also considers the material losses occurring during the manufacturing processes as well as losses during electricity transmission.

The manufacturing of insulated panels starts with the de-coiling of the internal and external steel coils. The liners are rolled into the desired profiled pattern. The foam formulation is then sprayed on to the internal liner and rises to meet the external liner, creating a chemical bond between the two liner sheets. Protective film is then placed on both liners to protect the paint coating. The panel is packaged with plastic wrap,

corrugated cardboard to protect the edges which is held in place with plastic tape, and the packaged product is distributed on wooden pallets.

TRANSPORT AND INSTALLATION (A4-A5)

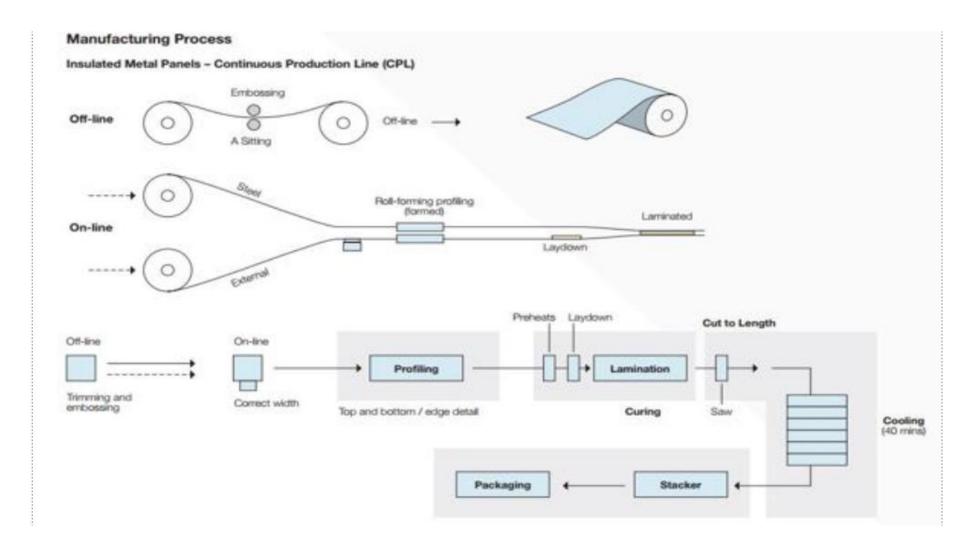
Transportation impacts occurred from final products delivery to construction site (A4) cover fuel direct exhaust emissions, environmental impacts of fuel production, as well as related infrastructure emissions. The transportation distance is assumed to be an average of 100km. The insulated panels are made to order, specific to the buildings requirements. Installation guides are available to assist the contractor with correct installation of the product and any ancillaries. The installation scenario assumes steel fixing (1 fixing per 1m2 of panel with an average weight of 0.021kg) and a conservative estimate of electricity for a power tool (1 kWh) and diesel (2 kWh) for a crane. Installation losses are estimated at 2%. These losses, as well as packaging, are included as installation waste.

PRODUCT USE AND MAINTENANCE (B1-B7)

This EPD does not cover the use phase.

Air, soil, and water impacts during the use phase have not been studied.

PRODUCT END OF LIFE (C1-C4, D)


For removal of the panels, a conservative estimate of electricity for a power tool (1 kWh) and diesel (2 kWh) for a crane has been made. At the end of the panel service life, it is recommended that the panels are sent to a reclamation facility where the steel can be separated from the foam and be recycled. 95% of steel is assumed to be recycled, with the remaining 5% landfilled according to 'World Steel Association, 2020'. To be most representative to the market whilst acknowledging that the foam can be used for waste to energy, we have modelled 50% to incineration and 50% landfill for our foam EOL. Energy recovery rates are considered based on 'Tolvik _ UK Energy from Waste Statistics, 2021'. It is not recommended that the panels are sent to landfill. In Module D, the net benefit of recycling steel, incinerating foam, and waste treatment of packaging materials is included as avoided material production (from recycling) and electricity and heat production (from incineration).

Created with One Click LCA Quadcore RW

MANUFACTURING PROCESS

LIFE-CYCLE ASSESSMENT

CUT-OFF CRITERIA

The study does not exclude any modules or processes which are stated mandatory in the reference standard and the applied PCR. The study does not exclude any hazardous materials or substances. The study includes all major raw material and energy consumption. All inputs and outputs of the unit processes, for which data is available for, are included in the calculation. There is no neglected unit process more than 1% of total mass or energy flows. The module specific total neglected input and output flows also do not exceed 5% of energy usage or mass.

ALLOCATION, ESTIMATES AND ASSUMPTIONS

Allocation is required if some material, energy, and waste data cannot be measured separately for the product under investigation. All allocations are done as per the reference standards and the applied PCR. In this study, allocation has been done in the following ways:

Data type	Allocation
Raw materials	No allocation
Packaging materials	No allocation
Ancillary materials	Not applicable
Manufacturing energy and waste	Allocated by mass or volume

AVERAGES AND VARIABILITY

Type of average	Multiple factories
Averaging method	Averaged by shares of total mass
Variation in GWP-fossil for A1-A3	<10%

This EPD is product and factory specific and does not contain average calculations.

LCA SOFTWARE AND BIBLIOGRAPHY

6

This EPD has been created using One Click LCA EPD Generator. The LCA and EPD have been prepared according to the reference standards and ISO 14040/14044. The EPD Generator uses Ecoinvent v3.8, Plastics Europe, Federal LCA Commons and One Click LCA databases as sources of environmental data.

Created with One Click LCA

ENVIRONMENTAL IMPACT DATA

CORE ENVIRONMENTAL IMPACT INDICATORS – EN 15804+A2, PEF

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	С3	C4	D
GWP – total ¹⁾	kg CO₂e	2.78E+01	1.71E+00	1.68E+00	3.12E+01	1.20E-01	2.34E+00	MND	9.74E-01	9.18E-02	5.33E+00	2.43E-01	-7.55E+00						
GWP – fossil	kg CO₂e	2.78E+01	1.71E+00	2.12E+00	3.16E+01	1.20E-01	1.89E+00	MND	9.73E-01	9.17E-02	5.33E+00	2.43E-01	-7.55E+00						
GWP – biogenic	kg CO₂e	0.00E+00	0.00E+00	-4.44E-01	-4.44E-01	0.00E+00	4.44E-01	MND	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00						
GWP – LULUC	kg CO₂e	2.01E-02	6.39E-04	5.68E-03	2.64E-02	4.48E-05	1.09E-03	MND	4.92E-04	3.67E-05	2.53E-04	4.73E-05	-1.96E-03						
Ozone depletion pot.	kg CFC ₋₁₁ e	7.66E-05	4.25E-07	2.70E-07	7.72E-05	2.98E-08	1.72E-06	MND	1.63E-07	2.13E-08	4.25E-08	8.35E-09	-2.41E-07						
Acidification potential	mol H†e	1.03E-01	5.51E-03	8.09E-03	1.17E-01	3.81E-04	1.07E-02	MND	7.85E-03	2.61E-04	6.35E-03	2.99E-04	-3.31E-02						
EP-freshwater ²⁾	kg Pe	2.12E-03	1.22E-05	3.24E-05	2.17E-03	8.54E-07	5.60E-05	MND	8.24E-06	6.55E-07	1.05E-05	9.23E-07	-3.92E-04						
EP-marine	kg Ne	2.03E-02	1.24E-03	2.81E-03	2.44E-02	8.41E-05	4.05E-03	MND	3.26E-03	5.20E-05	2.88E-03	2.39E-03	-5.87E-03						
EP-terrestrial	mol Ne	2.30E-01	1.38E-02	2.99E-02	2.74E-01	9.32E-04	4.29E-02	MND	3.59E-02	5.78E-04	2.83E-02	1.07E-03	-6.81E-02						
POCP ("smog") ³⁾	kg NMVOCe	9.65E-02	5.35E-03	8.05E-03	1.10E-01	3.67E-04	1.25E-02	MND	9.80E-03	2.22E-04	6.90E-03	3.39E-04	-3.21E-02						
ADP-minerals & metals ⁴⁾	kg Sbe	2.19E-04	4.17E-06	1.28E-05	2.36E-04	2.93E-07	7.34E-06	MND	1.22E-06	3.32E-07	2.07E-05	1.32E-07	-9.42E-05						
ADP-fossil resources	MJ	2.36E+02	2.72E+01	3.20E+01	2.96E+02	1.91E+00	2.43E+01	MND	1.72E+01	1.37E+00	4.84E+00	7.35E-01	-6.77E+01						
Water use ⁵⁾	m³e depr.	-5.73E+00	1.26E-01	3.72E-01	-5.23E+00	8.81E-03	3.77E-02	MND	8.81E-02	6.39E-03	2.29E-01	6.14E-03	-1.49E+00						

¹⁾ GWP = Global Warming Potential; 2) EP = Eutrophication potential. Required characterisation method and data are in kg P-eq. Multiply by 3,07 to get PO4e; 3) POCP = Photochemical ozone formation; 4) ADP = Abiotic depletion potential; 5) EN 15804+A2 disclaimer for Abiotic depletion and Water use and optional indicators except Particulate matter and Ionizing radiation, human health. The results of these environmental impact indicators shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

ADDITIONAL (OPTIONAL) ENVIRONMENTAL IMPACT INDICATORS – EN 15804+A2, PEF

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	B6	B7	C1	C2	С3	C4	D
Particulate matter	Incidence	1.48E-06	1.98E-07	1.38E-07	1.81E-06	1.39E-08	2.34E-07	MND	1.89E-07	7.39E-09	3.91E-08	4.92E-09	-4.58E-07						
Ionizing radiation ⁶⁾	kBq U235e	1.94E+00	1.40E-01	1.02E-01	2.19E+00	9.84E-03	3.87E-01	MND	3.32E-01	7.17E-03	2.64E-02	4.32E-03	-4.43E-01						
Ecotoxicity (freshwater)	CTUe	8.06E+02	2.26E+01	3.55E+01	8.65E+02	1.59E+00	3.32E+01	MND	9.32E+00	1.14E+00	2.30E+01	4.60E+00	-2.45E+02						
Human toxicity, cancer	CTUh	1.41E-07	5.89E-10	1.37E-09	1.43E-07	4.13E-11	3.60E-09	MND	2.86E-10	3.50E-11	7.66E-10	2.33E-11	-1.57E-08						
Human tox. non-cancer	CTUh	1.14E-06	2.31E-08	2.20E-08	1.19E-06	1.62E-09	3.41E-08	MND	6.35E-09	1.12E-09	3.04E-08	6.41E-10	9.11E-07						
SQP ⁷⁾	-	6.61E+01	3.17E+01	4.79E+01	1.46E+02	2.23E+00	7.82E+00	MND	4.25E+00	9.70E-01	4.52E+00	1.47E+00	-3.33E+01						

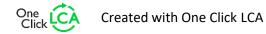
⁶⁾ EN 15804+A2 disclaimer for Ionizing radiation, human health. This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator; 7) SQP = Land use related impacts/soil quality.

USE OF NATURAL RESOURCES

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
Renew. PER as energy ⁸⁾	MJ	3.22E+01	3.52E-01	3.92E+01	7.17E+01	2.47E-02	3.11E+00	MND	1.56E+00	1.99E-02	4.11E-01	2.70E-02	-8.03E+00						
Renew. PER as material	MJ	0.00E+00	0.00E+00	3.87E+00	3.87E+00	0.00E+00	-3.87E+00	MND	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00						
Total use of renew. PER	MJ	3.22E+01	3.52E-01	4.31E+01	7.56E+01	2.47E-02	-7.63E-01	MND	1.56E+00	1.99E-02	4.11E-01	2.70E-02	-8.03E+00						
Non-re. PER as energy	MJ	4.04E+02	2.72E+01	3.05E+01	4.61E+02	1.91E+00	2.76E+01	MND	1.72E+01	1.37E+00	4.84E+00	7.35E-01	-6.77E+01						
Non-re. PER as material	MJ	1.03E+02	0.00E+00	-1.84E+00	1.02E+02	0.00E+00	-1.49E+00	MND	0.00E+00	0.00E+00	0.00E+00	-1.00E+02	0.00E+00						
Total use of non-re. PER	MJ	5.07E+02	2.72E+01	2.87E+01	5.63E+02	1.91E+00	2.62E+01	MND	1.72E+01	1.37E+00	4.84E+00	-9.93E+01	-6.77E+01						
Secondary materials	kg	3.36E+00	7.67E-03	2.27E-01	3.59E+00	5.38E-04	8.22E-02	MND	4.05E-03	4.65E-04	3.21E-03	2.21E-04	2.48E+00						
Renew. secondary fuels	MJ	3.31E-03	6.77E-05	5.64E-02	5.98E-02	4.75E-06	1.24E-03	MND	1.36E-05	5.12E-06	1.56E-04	8.02E-06	-9.02E-04						
Non-ren. secondary fuels	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	MND	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00						
Use of net fresh water	m³	3.13E+00	3.61E-03	8.46E-03	3.15E+00	2.53E-04	6.59E-02	MND	2.05E-03	1.74E-04	1.09E-02	7.26E-04	-4.86E-02						

⁸⁾ PER = Primary energy resources.

END OF LIFE – WASTE


Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
Hazardous waste	kg	7.57E+00	2.92E-02	6.49E-02	7.66E+00	2.05E-03	2.16E-01	MND	2.91E-02	1.55E-03	1.36E-02	0.00E+00	-3.01E+00						
Non-hazardous waste	kg	3.90E+01	5.08E-01	9.23E-01	4.04E+01	3.56E-02	1.56E+00	MND	3.21E-01	2.76E-02	2.33E+00	2.62E+00	-1.34E+01						
Radioactive waste	kg	6.81E-04	1.88E-04	6.41E-05	9.32E-04	1.32E-05	1.59E-04	MND	1.36E-04	9.40E-06	1.17E-05	0.00E+00	-9.99E-05						

END OF LIFE – OUTPUT FLOWS

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	С3	C4	D
Components for re-use	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	MND	0.00E+00	0.00E+00	0.00E+00	3.64E-01	0.00E+00						
Materials for recycling	kg	0.00E+00	0.00E+00	6.24E-02	6.24E-02	0.00E+00	1.36E-01	MND	0.00E+00	0.00E+00	6.75E+00	0.00E+00	0.00E+00						
Materials for energy rec	kg	0.00E+00	0.00E+00	3.34E-02	3.34E-02	0.00E+00	1.21E-01	MND	0.00E+00	0.00E+00	1.90E+00	0.00E+00	0.00E+00						
Exported energy	MJ	0.00E+00	0.00E+00	1.44E-01	1.44E-01	0.00E+00	1.51E+00	MND	0.00E+00	0.00E+00	1.63E+01	0.00E+00	0.00E+00						

ENVIRONMENTAL IMPACTS – EN 15804+A1, CML / ISO 21930

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4	D
Global Warming Pot.	kg CO₂e	2.66E+01	1.69E+00	2.10E+00	3.04E+01	1.18E-01	1.93E+00	MND	9.62E-01	9.09E-02	5.26E+00	2.01E-01	-7.22E+00						
Ozone depletion Pot.	kg CFC ₋₁₁ e	1.01E-04	3.37E-07	2.31E-07	1.01E-04	2.36E-08	2.16E-06	MND	1.31E-07	1.68E-08	3.61E-08	6.64E-09	-2.48E-07						
Acidification	kg SO₂e	8.47E-02	4.46E-03	5.96E-03	9.51E-02	3.09E-04	8.00E-03	MND	5.67E-03	2.14E-04	4.61E-03	2.27E-04	-2.82E-02						
Eutrophication	kg PO ₄ ³e	4.53E-02	9.48E-04	2.12E-03	4.84E-02	6.55E-05	3.51E-03	MND	1.39E-03	4.61E-05	2.59E-03	5.63E-02	-1.23E-02						
POCP ("smog")	kg C ₂ H ₄ e	1.03E-02	2.06E-04	3.60E-04	1.09E-02	1.44E-05	4.17E-04	MND	1.45E-04	1.08E-05	9.23E-05	3.70E-05	-3.52E-03						
ADP-elements	kg Sbe	2.15E-04	4.06E-06	1.25E-05	2.32E-04	2.85E-07	7.24E-06	MND	1.22E-06	3.24E-07	2.06E-05	1.29E-07	-9.35E-05						
ADP-fossil	MJ	5.07E+02	2.72E+01	3.20E+01	5.66E+02	1.91E+00	2.97E+01	MND	1.72E+01	1.37E+00	4.84E+00	7.35E-01	-6.77E+01						

VERIFICATION STATEMENT

VERIFICATION PROCESS FOR THIS EPD

This EPD has been verified in accordance with ISO 14025 by an independent, third-party verifier by reviewing results, documents and compliancy with reference standard, ISO 14025 and ISO 14040/14044, following the process and checklists of the program operator for:

- This Environmental Product Declaration
- The Life-Cycle Assessment used in this EPD
- The digital background data for this EPD

Why does verification transparency matter? Read more online
This EPD has been generated by One Click LCA EPD generator, which has been verified and approved by the EPD Hub.

THIRD-PARTY VERIFICATION STATEMENT

I hereby confirm that, following detailed examination, I have not established any relevant deviations by the studied Environmental Product Declaration (EPD), its LCA and project report, in terms of the data collected and used in the LCA calculations, the way the LCA-based calculations have been carried out, the presentation of environmental data in the EPD, and other additional environmental information, as present with respect to the procedural and methodological requirements in ISO 14025:2010 and reference standard.

I confirm that the company-specific data has been examined as regards plausibility and consistency; the declaration owner is responsible for its factual integrity and legal compliance.

I confirm that I have sufficient knowledge and experience of construction products, this specific product category, the construction industry, relevant standards, and the geographical area of the EPD to carry out this verification.

I confirm my independence in my role as verifier; I have not been involved in the execution of the LCA or in the development of the declaration and have no conflicts of interest regarding this verification.

Magaly González Vázquez, as an authorized verifier acting for EPD Hub Limited
Updated 26.06.2024

ANNEX 1

SCALING TABLE A1-A3:

Thickness	of product	40mm	53mm	60mm	73mm	80mm	91mm	100mm	115	120mm	137mm	150mm	167mm
Product V	Veight per 1m2	9	9.5	9.7	10.2	10.5	10.9	11.3	11.8	12	12.7	13.2	13.8
Impact Ca	ntegory	A1-A3	A1-A3	A1-A3	A1-A3	A1-A3	A1-A3	A1-A3	A1-A3	A1-A3	A1-A3	A1-A3	A1-A3
	GWP- Total	0.78	0.83	0.85	0.85	0.93	0.97	1.00	1.05	1.07	1.13	1.18	1.24
	GWP - Fossil	0.78	0.83	0.85	0.90	0.93	0.97	1.00	1.05	1.07	1.13	1.18	1.24
	GWP - Biogenic	1.00	1.00	1.00	-209.56	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PEF	GWP - LULUC	0.78	0.08	0.86	-5.15	0.93	0.97	1.00	1.06	1.07	1.13	1.19	1.23
	Ozone depletion pot.	0.41	0.55	0.60	308.29	0.81	0.91	1.00	1.15	1.19	1.36	1.49	1.65
15804+A2,	Acidification potential	0.84	0.88	0.90	0.00	0.95	0.97	1.00	1.03	1.05	1.09	1.13	1.17
8	EP - Freshwater	0.63	0.71	0.75	50.23	0.88	0.94	1.00	1.11	1.11	1.22	1.33	1.39
	EP - Marine	0.42	0.87	0.89	0.07	0.95	1.16	1.00	1.04	1.05	1.10	1.14	1.18
Z	EP - Terrestrial	0.84	0.87	0.89	0.08	0.95	0.97	1.00	1.04	1.05	1.09	1.13	1.18
	POCP ("smog")	0.86	0.89	0.91	2.31	0.95	0.98	1.00	1.04	1.05	1.08	1.12	1.15
	ADP - minerals & metals	0.92	0.94	0.95	436.44	0.98	0.99	1.00	1.02	1.03	1.05	1.07	1.08
	ADP - fossil resources	0.90	0.93	0.94	0.95	0.97	0.98	1.00	1.02	1.03	1.05	1.07	1.10
EN 15804+A1, CML/ ISO 21930	Global Warming Potential	0.78	0.83	0.86	0.90	0.93	0.97	1.00	1.06	1.07	1.13	1.18	1.24

ANNEX 2

SCALING TABLE A-C:

Thickness	of product	40mm	53mm	60mm	73mm	80mm	91mm	100mm	115	120mm	137mm	150mm	167mm
Product V	Veight per 1m2	9	9.5	9.7	10.2	10.5	10.9	11.3	11.8	12	12.7	13.2	13.8
Impact Ca	ategory	A-C	A-C	A-C	A-C	A-C	A-C						
	GWP- Total	0.74	0.80	0.83	0.88	0.91	0.96	1.00	1.06	1.08	1.16	1.21	1.29
	GWP - Fossil	0.74	0.80	0.83	0.89	0.92	0.96	1.00	1.06	1.09	1.16	1.22	1.29
	GWP - Biogenic	0.62	0.80	0.83	0.88	0.91	0.96	1.00	1.06	1.09	1.16	1.21	1.29
PEF	GWP - LULUC	0.79	0.84	0.86	0.90	0.93	0.97	1.00	1.05	1.07	1.13	1.18	1.23
7,	Ozone depletion pot.	0.41	0.55	0.60	0.73	0.82	0.91	1.00	1.14	1.19	1.36	1.49	1.64
15804+A	Acidification potential	0.85	0.88	0.90	0.93	0.95	0.98	1.00	1.03	1.05	1.09	1.13	1.16
8	EP - Freshwater	0.63	0.71	0.76	0.83	0.88	0.95	1.00	1.11	1.12	1.22	1.33	1.39
12	EP - Marine	0.81	0.85	0.87	0.91	0.94	0.82	1.00	1.05	1.06	1.12	1.16	1.21
Z	EP - Terrestrial	0.84	0.88	0.90	0.93	0.95	0.98	1.00	1.02	1.05	1.10	1.13	1.17
	POCP ("smog")	0.86	0.89	0.91	0.94	0.96	0.98	1.00	0.89	1.04	1.09	1.11	1.15
	ADP - minerals & metals	0.93	0.95	0.95	0.97	0.98	0.99	1.00	1.02	1.02	1.05	1.06	1.08
	ADP - fossil resources	0.91	0.93	0.94	0.96	0.97	0.99	1.00	1.02	1.03	1.05	1.07	1.10
EN 15804+A1, CML/ ISO 21930	Global Warming Potential	0.74	0.80	0.83	0.88	0.92	0.96	1.00	1.06	1.08	1.16	1.21	1.28