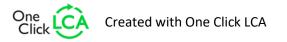




# **ENVIRONMENTAL PRODUCT DECLARATION**

IN ACCORDANCE WITH EN 15804+A2 & ISO 14025


Minikid 4 Max Axkid AB



## **EPD HUB, HUB-3722**

Published on 29.07.2025, last updated on 29.07.2025, valid until 28.07.2030

Life Cycle Assessment study has been performed in accordance with the requirements of EN 15804, EPD Hub PCR version 1.2 (24 Mar 2025) and JRC characterization factors EF 3.1.









## **GENERAL INFORMATION**

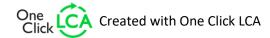
### **MANUFACTURER**

| Manufacturer    | Axkid AB                                  |
|-----------------|-------------------------------------------|
| Address         | Göteborgsvägen 94, 431 37 Mölndal, Sweden |
| Contact details | Info@axkid.com                            |
| Website         | www.axkid.com                             |

#### **EPD STANDARDS, SCOPE AND VERIFICATION**

|                    | COIL AND VERIFICATION                                                                                                   |
|--------------------|-------------------------------------------------------------------------------------------------------------------------|
| Program operator   | EPD Hub, hub@epdhub.com                                                                                                 |
| Reference standard | EN 15804:2012+A2:2019/AC:2021 and ISO 14025                                                                             |
| PCR                | EPD Hub Core PCR Version 1.2, 24 Mar 2025                                                                               |
| Sector             | Manufactured product                                                                                                    |
| Category of EPD    | Third party verified EPD                                                                                                |
| Parent EPD number  | -                                                                                                                       |
| Scope of the EPD   | Cradle to gate with options, A4-A5, and modules C1-C4, D                                                                |
| EPD author         | Alexander Nyström, Greenstep Oy                                                                                         |
| EPD verification   | Independent verification of this EPD and data, according to ISO 14025:  ☐ Internal verification ☑ External verification |
| EPD verifier       | Lucas Rodriguez, as an authorized verifier acting for EPD Hub Limited                                                   |

This EPD is intended for business-to-business and/or business-to-consumer communication. The manufacturer has the sole ownership, liability, and responsibility for the EPD. EPDs within the same product category but from different programs may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804 and if they are not compared in a building context.


### **PRODUCT**

2

| Product name                               | Minikid 4 Max                                       |
|--------------------------------------------|-----------------------------------------------------|
| Additional labels                          | -                                                   |
| Product reference                          | 22150339, 22150340, 22150341,<br>22150342, 22150343 |
| Place(s) of raw material origin            | China                                               |
| Place of production                        | China                                               |
| Place(s) of installation and use           | Europe (as scenario in the EPD)                     |
| Period for data                            | 1.1.2024-31.12.2024                                 |
| Averaging in EPD                           | No grouping                                         |
| Variation in GWP-fossil for A1-A3 (%)      | -                                                   |
| GTIN (Global Trade Item Number)            | -                                                   |
| NOBB (Norwegian Building Product Database) | -                                                   |
| A1-A3 Specific data (%)                    | 7,42                                                |

#### **ENVIRONMENTAL DATA SUMMARY**

| Declared unit                   | 1 unit of rear-facing car seat |
|---------------------------------|--------------------------------|
| Declared unit mass              | 10,9 kg                        |
| GWP-fossil, A1-A3 (kgCO₂e)      | 7,05E+01                       |
| GWP-total, A1-A3 (kgCO₂e)       | 6,68E+01                       |
| Secondary material, inputs (%)  | 22,6                           |
| Secondary material, outputs (%) | 80,8                           |
| Total energy use, A1-A3 (kWh)   | 267                            |
| Net freshwater use, A1-A3 (m³)  | 0,6                            |







## PRODUCT AND MANUFACTURER

#### **ABOUT THE MANUFACTURER**

Axkid is a leading innovator in car seats, dedicated to promoting the safest solutions for travel. The company was founded in 2009, and with its Swedish heritage in safety, innovation, and design, Axkid is making roads safer today across the world. The products are sold through retailers and Axkids own ecommerce platform. By educating on traffic safety and providing the best protection and comfort for young adventurers, Axkid offers peace of mind to parents around the world.

#### PRODUCT DESCRIPTION

Axkid Up<sup>™</sup> is our most advanced high back booster seat ever. Fits children between 4 to 12 years old (100-150cm/50kg) and adapts to your child with the raisable seat, to ensure perfect belt position. Equipped with a solid steel frame with a built-in support leg for added stability.

#### **Key Features**

- CompactFit<sup>™</sup> designed for ultimate space-saving
- SafeLock™ integrated belt locking with anti-glide
- Easy installation with auto-retracting tether straps
- Magnetic harness and adaptable 3-part inlay
- Up to 30 cm legroom on all approved places in the car
- Adjustable 13-step headrest and 3-step recline
- Plus Test approved and crash tested beyond standards

## A new era of forward-facing safety

The only high back booster seat in world with a patented raisable seat. Elevating safety and your child to benefit from the safety systems in the car like side airbags, pretensioners and optimal non-slack belt routing. Axkid Up has received numerous awards and redefines forward-facing car seat safety. With the ProTecBase™ Axkid Up reduces crash forces up to 25%\* and has been tested up to 50 kg.

Further information can be found at: www.axkid.com.

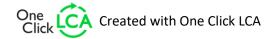
#### PRODUCT RAW MATERIAL MAIN COMPOSITION

| Raw material category | Amount, mass % | Material origin |
|-----------------------|----------------|-----------------|
| Metals                | 38,7           | China           |
| Minerals              | 0,1            | China           |
| Fossil materials      | 61,1           | China           |
| Bio-based materials   | 0              | China           |

#### **BIOGENIC CARBON CONTENT**

Product's biogenic carbon content at the factory gate

| Biogenic carbon content in product, kg C   | 0,00 |
|--------------------------------------------|------|
| Biogenic carbon content in packaging, kg C | 1,23 |


#### **FUNCTIONAL UNIT AND SERVICE LIFE**

| Declared unit          | 1 unit of rear-facing car seat |
|------------------------|--------------------------------|
| Mass per declared unit | 10,9 kg                        |
| Functional unit        | -                              |
| Reference service life | -                              |

### **SUBSTANCES, REACH - VERY HIGH CONCERN**

3

The product does not contain any REACH SVHC substances in amounts greater than 0,1 % (1000 ppm).







## PRODUCT LIFE-CYCLE

#### SYSTEM BOUNDARY

This EPD covers the life-cycle modules listed in the following table.

| Pro           | duct st   | tage          |           | mbly<br>ige |     |             | U      | se sta      | ge            |                        |                       | Ei                         | nd of l   | ife stag         | ge       | Beyond the<br>system<br>boundaries |          |           |  |  |
|---------------|-----------|---------------|-----------|-------------|-----|-------------|--------|-------------|---------------|------------------------|-----------------------|----------------------------|-----------|------------------|----------|------------------------------------|----------|-----------|--|--|
| A1            | A2        | А3            | A4        | A5          | B1  | B2          | В3     | B4          | B5            | В6                     | В7                    | <b>C1</b>                  | C2        | С3               | C4       |                                    |          |           |  |  |
| ×             | ×         | ×             | ×         | ×           | MND | MND         | MND    | MND         | MND           | MND                    | MND                   | ×                          | ×         | ×                | ×        |                                    |          |           |  |  |
| Raw materials | Transport | Manufacturing | Transport | Assembly    | Use | Waintenance | Repair | Replacement | Refurbishment | Operational energy use | Operational water use | Deconstruction/ demolition | Transport | Waste processing | Disposal | Reuse                              | Recovery | Recycling |  |  |

Modules not declared = MND. Modules not relevant = MNR

## **MANUFACTURING AND PACKAGING (A1-A3)**

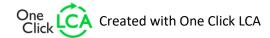
The environmental impacts considered for the product stage cover the manufacturing of raw materials used in the production as well as packaging materials and other ancillary materials. Also, fuels used by machines, and handling of waste formed in the production processes at the manufacturing facilities are included in this stage. The study also considers the material losses occurring during the manufacturing processes as well as losses during electricity transmission.

For the upstream transportation (A2), all transportation from tier 1 suppliers to Axkid's manufacturing site was included. For the rest of the supply chain

transports, Market for-datasets were used for all raw materials to account for all transportation up to the tier 1 suppliers (A1). For the manufacturing stage (A3), total utility consumption and waste generation were reported on factory level and then allocated per product based on the annual production volumes of all rear-facing car seats. This includes water use, which is an input and output of the factory but not directly used in the manufacturing process.

### **TRANSPORT AND INSTALLATION (A4-A5)**

Transportation impacts occurred from final products delivery to construction site (A4) cover fuel direct exhaust emissions, environmental impacts of fuel production, as well as related infrastructure emissions.


The distribution scenario (A4) is based on a weighted average of Axkid's own data, from the manufacturing site to retailers, distributor warehouses and end-consumers. Specifically, the following transportation distances and datasets were used:

- 954 km Market for transport, freight, lorry, unspecified
- 26042 km Market for transport, freight, sea, container ship

The installation stage (A5) includes the end-of-life scenario of packaging materials which is representative for EU and based on the following source:

Eurostat (2023). Packaging waste by waste management operations.
 <a href="https://ec.europa.eu/eurostat/databrowser/view/env">https://ec.europa.eu/eurostat/databrowser/view/env</a> waspac custo
 m 17539924/default/table

A 100 km transport was also included in A5, as an assumption, to represent the transportation of waste from the waste collection site to the waste treatment site. The following dataset was used: Market for transport, freight, lorry, unspecified.

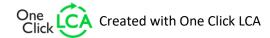






## PRODUCT USE AND MAINTENANCE (B1-B7)

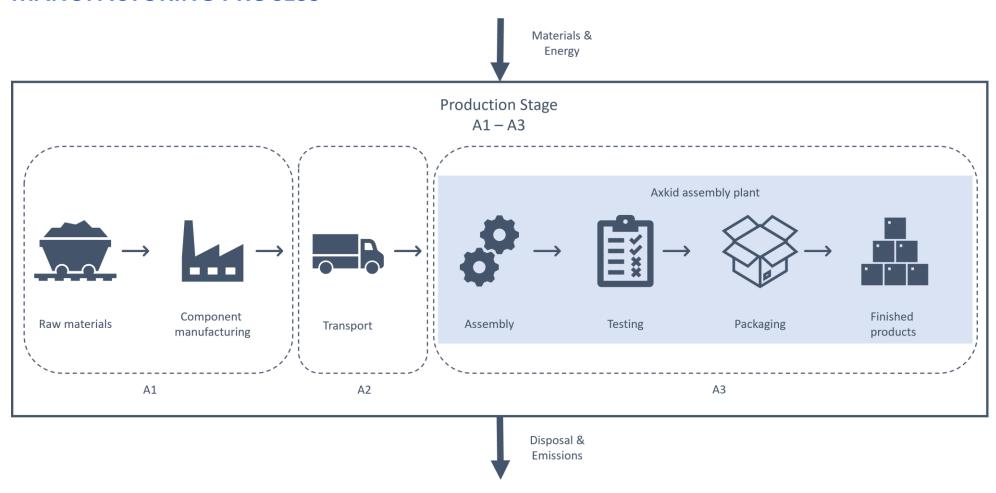
The product does not require fuel or energy input during the use stage. Also, there is no planned maintenance for the product. Axkid offers spare parts in case anything breaks during its lifetime; however, this is rare and therefore considered negligible in the LCA.


Air, soil, and water impacts during the use phase have not been studied.

### PRODUCT END OF LIFE (C1-C4, D)

The end-of-life scenario is largely representative for EU and is based on the following sources:

- EuRIC aisbl (2020). Recycling: Bridging Circular Economy & Climate Policy. <a href="https://circulareconomy.europa.eu/platform/en/knowledge/metal-recycling-factsheet-euric">https://circulareconomy.europa.eu/platform/en/knowledge/metal-recycling-factsheet-euric</a>
- International Zinc Association (2011). Zinc recycling: Closing the loop.
   https://www.zink.de/wp-content/uploads/ALTE TYPO3 SEITE/D O K U M E N T E/Broschuer
   en/IZA Broschueren/IZA Closing the Loop new.pdf
- Plastics Europe (2021). Zero plastics to landfill. <a href="https://plasticseurope.org/sustainability/circularity/recycling/zero-plastics-to-landfill/">https://plasticseurope.org/sustainability/circularity/recycling/zero-plastics-to-landfill/</a>


Specifically, metal recycling was assumed according to the recycling rates provided in the sources. For all polymer-based materials, energy recovery was assumed at a rate of 75% according to Plastics Europe (2021); the rest was assumed to go to landfill. A 100 km transport was also included, as an assumption, to represent the transportation of waste from the waste collection site to the waste treatment site. The following dataset was used: Market for transport, freight, lorry, unspecified.







# **MANUFACTURING PROCESS**







## LIFE-CYCLE ASSESSMENT

#### **CUT-OFF CRITERIA**

The study does not exclude any modules or processes which are stated mandatory in the reference standard and the applied PCR. The study does not exclude any hazardous materials or substances. The study includes all major raw material and energy consumption. All inputs and outputs of the unit processes, for which data is available for, are included in the calculation. There is no neglected unit process more than 1% of total mass or energy flows. The module specific total neglected input and output flows also do not exceed 5% of energy usage or mass.

The production of capital equipment, construction activities, and infrastructure, maintenance and operation of capital equipment, personnel-related activities, energy and water use related to company management and sales activities are excluded.

#### **VALIDATION OF DATA**

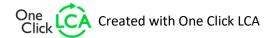
Data collection for production, transport, and packaging was conducted using time and site-specific information, as defined in the general information section on page 1 and 2. Upstream process calculations rely on generic data as defined in the Bibliography section. Manufacturer-provided specific and generic data were used for the product's manufacturing stage. The analysis was performed in One Click LCA EPD Generator, with the 'Cut-Off, EN 15804+A2' allocation method, and characterization factors according to EN 15804:2012+A2:2019/AC:2021 and JRC EF 3.1.

## **ALLOCATION, ESTIMATES AND ASSUMPTIONS**

Allocation is required if some material, energy, and waste data cannot be measured separately for the product under investigation. All allocations are done as per the reference standards and the applied PCR. In this study, allocation has been done in the following ways:

| Data type                      | Allocation                  |
|--------------------------------|-----------------------------|
| Raw materials                  | No allocation               |
| Packaging material             | No allocation               |
| Ancillary materials            | Allocated by mass or volume |
| Manufacturing energy and waste | Allocated by mass or volume |

#### **PRODUCT & MANUFACTURING SITES GROUPING**


| Type of grouping                     | No grouping    |
|--------------------------------------|----------------|
| Grouping method                      | Not applicable |
| Variation in GWP-fossil for A1-A3, % | -              |

This EPD is product and factory specific.

#### LCA SOFTWARE AND BIBLIOGRAPHY

7

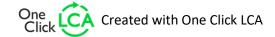
This EPD has been created using One Click LCA EPD Generator. The LCA and EPD have been prepared according to the reference standards and ISO 14040/14044. The EPD Generator uses Ecoinvent v3.10.1 and One Click LCA databases as sources of environmental data. Allocation used in Ecoinvent 3.10.1 environmental data sources follow the methodology 'allocation, Cutoff, EN 15804+A2'.







## **ENVIRONMENTAL IMPACT DATA**


The estimated impact results are only relative statements which do not indicate the end points of the impact categories, exceeding threshold values, safety margins or risks.

## CORE ENVIRONMENTAL IMPACT INDICATORS - EN 15804+A2, EF 3.1

| Impact category                      | Unit         | A1       | A2       | А3        | A1-A3     | A4       | A5       | B1  | B2  | В3  | B4  | B5  | В6  | B7  | C1       | C2       | C3        | C4        | D         |
|--------------------------------------|--------------|----------|----------|-----------|-----------|----------|----------|-----|-----|-----|-----|-----|-----|-----|----------|----------|-----------|-----------|-----------|
| GWP – total <sup>1)</sup>            | kg CO₂e      | 6,19E+01 | 3,32E-01 | 4,57E+00  | 6,68E+01  | 5,90E+00 | 4,72E+00 | MND | 0,00E+00 | 1,70E-01 | 1,20E+01  | 1,45E-01  | -1,09E+00 |
| GWP – fossil                         | kg CO₂e      | 6,13E+01 | 3,32E-01 | 8,93E+00  | 7,05E+01  | 5,90E+00 | 2,36E-01 | MND | 0,00E+00 | 1,70E-01 | 1,20E+01  | 1,59E-01  | -1,14E+00 |
| GWP – biogenic                       | kg CO₂e      | 6,12E-01 | 0,00E+00 | -4,46E+00 | -3,85E+00 | 1,07E-03 | 4,48E+00 | MND | 0,00E+00 | 0,00E+00 | -4,60E-02 | -1,40E-02 | 3,98E-02  |
| GWP – LULUC                          | kg CO₂e      | 7,02E-02 | 1,52E-04 | 1,04E-01  | 1,74E-01  | 3,01E-03 | 7,82E-05 | MND | 0,00E+00 | 7,77E-05 | 1,61E-04  | 1,50E-05  | 1,00E-02  |
| Ozone depletion pot.                 | kg CFC-11e   | 7,11E-06 | 4,83E-09 | 1,24E-07  | 7,24E-06  | 8,51E-08 | 1,33E-09 | MND | 0,00E+00 | 2,48E-09 | 4,96E-09  | 5,71E-10  | 1,56E-08  |
| Acidification potential              | mol H⁺e      | 2,71E-01 | 1,51E-03 | 4,71E-02  | 3,20E-01  | 1,21E-01 | 6,05E-04 | MND | 0,00E+00 | 7,73E-04 | 3,09E-03  | 1,63E-04  | -3,20E-03 |
| EP-freshwater <sup>2)</sup>          | kg Pe        | 1,96E-02 | 2,64E-05 | 2,91E-03  | 2,26E-02  | 2,87E-04 | 2,42E-05 | MND | 0,00E+00 | 1,35E-05 | 6,96E-05  | 2,39E-06  | -2,31E-04 |
| EP-marine                            | kg Ne        | 5,58E-02 | 5,66E-04 | 1,55E-02  | 7,19E-02  | 3,13E-02 | 5,40E-04 | MND | 0,00E+00 | 2,90E-04 | 1,72E-03  | 3,53E-03  | 4,25E-04  |
| EP-terrestrial                       | mol Ne       | 5,82E-01 | 6,18E-03 | 1,17E-01  | 7,05E-01  | 3,47E-01 | 2,06E-03 | MND | 0,00E+00 | 3,17E-03 | 1,42E-02  | 6,54E-04  | -1,09E-02 |
| POCP ("smog") <sup>3</sup> )         | kg<br>NMVOCe | 2,32E-01 | 2,13E-03 | 3,50E-02  | 2,69E-01  | 9,69E-02 | 7,26E-04 | MND | 0,00E+00 | 1,09E-03 | 3,60E-03  | 2,57E-04  | -2,27E-03 |
| ADP-minerals & metals <sup>4</sup> ) | kg Sbe       | 1,76E-03 | 1,06E-06 | 3,59E-05  | 1,80E-03  | 1,05E-05 | 8,52E-07 | MND | 0,00E+00 | 5,46E-07 | 2,35E-06  | 4,82E-08  | 1,41E-05  |
| ADP-fossil resources                 | MJ           | 1,00E+03 | 4,73E+00 | 1,13E+02  | 1,12E+03  | 7,64E+01 | 1,36E+00 | MND | 0,00E+00 | 2,42E+00 | 2,94E+00  | 4,92E-01  | 1,44E+00  |
| Water use <sup>5)</sup>              | m³e depr.    | 2,48E+01 | 2,27E-02 | 2,58E+00  | 2,74E+01  | 2,74E-01 | 4,33E-02 | MND | 0,00E+00 | 1,16E-02 | 8,05E-01  | 2,52E-03  | 5,76E-01  |

<sup>1)</sup> GWP = Global Warming Potential; 2) EP = Eutrophication potential. Required characterisation method and data are in kg P-eq. Multiply by 3,07 to get PO4e; 3) POCP = Photochemical ozone formation; 4) ADP = Abiotic depletion potential; 5) EN 15804+A2 disclaimer for Abiotic depletion and Water use and optional indicators except Particulate matter and Ionizing radiation, human health. The results of these environmental impact indicators shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

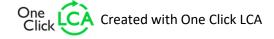
8







## ADDITIONAL (OPTIONAL) ENVIRONMENTAL IMPACT INDICATORS – EN 15804+A2, EF 3.1


| Impact category                  | Unit      | A1       | A2       | A3       | A1-A3    | A4       | A5       | B1  | B2  | В3  | B4  | B5  | В6  | B7  | C1       | C2       | C3       | C4       | D         |
|----------------------------------|-----------|----------|----------|----------|----------|----------|----------|-----|-----|-----|-----|-----|-----|-----|----------|----------|----------|----------|-----------|
| Particulate matter               | Incidence | 3,65E-06 | 3,19E-08 | 7,34E-07 | 4,42E-06 | 3,15E-07 | 8,79E-09 | MND | 0,00E+00 | 1,63E-08 | 2,06E-08 | 3,52E-09 | -8,60E-08 |
| Ionizing radiation <sup>6)</sup> | kBq       | 3,28E+00 | 4,03E-03 | 7,44E-01 | 4,03E+00 | 4,64E-02 | 7,21E-03 | MND | 0,00E+00 | 2,07E-03 | 1,30E-02 | 5,08E-04 | 8,23E-02  |
| Ecotoxicity (freshwater)         | CTUe      | 7,86E+02 | 7,44E-01 | 3,92E+01 | 8,26E+02 | 8,14E+00 | 8,98E+00 | MND | 0,00E+00 | 3,81E-01 | 2,45E+01 | 8,74E+00 | 1,93E+01  |
| Human toxicity, cancer           | CTUh      | 4,66E-08 | 8,12E-11 | 3,03E-09 | 4,97E-08 | 1,32E-09 | 9,18E-11 | MND | 0,00E+00 | 4,16E-11 | 1,11E-09 | 2,06E-11 | 1,63E-09  |
| Human tox. non-cancer            | CTUh      | 8,99E-07 | 3,26E-09 | 9,65E-08 | 9,99E-07 | 3,20E-08 | 4,18E-09 | MND | 0,00E+00 | 1,67E-09 | 3,81E-08 | 3,86E-09 | 1,82E-07  |
| SQP <sup>7)</sup>                | -         | 2,33E+02 | 3,54E+00 | 2,46E+02 | 4,83E+02 | 2,61E+01 | 1,07E+00 | MND | 0,00E+00 | 1,81E+00 | 3,88E+00 | 1,11E+00 | -5,11E+01 |

6) EN 15804+A2 disclaimer for lonizing radiation, human health. This impact category deals mainly with the eventual impact of low-dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator; 7) SQP = Land use related impacts/soil quality.

## **USE OF NATURAL RESOURCES**

| Impact category                    | Unit | A1       | A2       | А3       | A1-A3    | A4       | A5        | B1  | B2  | В3  | B4  | B5  | В6  | B7  | C1       | C2       | C3        | C4        | D         |
|------------------------------------|------|----------|----------|----------|----------|----------|-----------|-----|-----|-----|-----|-----|-----|-----|----------|----------|-----------|-----------|-----------|
| Renew. PER as energy <sup>8)</sup> | MJ   | 6,37E+01 | 6,71E-02 | 1,51E+01 | 7,88E+01 | 7,80E-01 | -5,03E+01 | MND | 0,00E+00 | 3,44E-02 | 1,59E-01  | -1,01E-02 | -8,41E+00 |
| Renew. PER as material             | MJ   | 5,61E-02 | 0,00E+00 | 4,00E+01 | 4,01E+01 | 0,00E+00 | -3,98E+01 | MND | 0,00E+00 | 0,00E+00 | -4,21E-02 | -1,40E-02 | 2,01E-02  |
| Total use of renew. PER            | MJ   | 6,37E+01 | 6,71E-02 | 5,51E+01 | 1,19E+02 | 7,80E-01 | -9,01E+01 | MND | 0,00E+00 | 3,44E-02 | 1,16E-01  | -2,41E-02 | -8,39E+00 |
| Non-re. PER as energy              | MJ   | 7,68E+02 | 4,73E+00 | 1,08E+02 | 8,81E+02 | 7,64E+01 | -3,05E+00 | MND | 0,00E+00 | 2,42E+00 | -1,79E+02 | -6,03E+01 | 1,36E+00  |
| Non-re. PER as material            | MJ   | 2,33E+02 | 0,00E+00 | 5,33E+00 | 2,38E+02 | 0,00E+00 | -5,22E+00 | MND | 0,00E+00 | 0,00E+00 | -1,74E+02 | -5,81E+01 | 1,54E-01  |
| Total use of non-re. PER           | MJ   | 1,00E+03 | 4,73E+00 | 1,14E+02 | 1,12E+03 | 7,64E+01 | -8,27E+00 | MND | 0,00E+00 | 2,42E+00 | -3,54E+02 | -1,18E+02 | 1,52E+00  |
| Secondary materials                | kg   | 2,46E+00 | 2,11E-03 | 2,33E+00 | 4,80E+00 | 3,55E-02 | 2,05E-03  | MND | 0,00E+00 | 1,08E-03 | 3,30E-03  | 1,70E-04  | 1,43E+00  |
| Renew. secondary fuels             | MJ   | 7,57E-02 | 2,68E-05 | 3,42E-01 | 4,17E-01 | 2,18E-04 | 1,38E-05  | MND | 0,00E+00 | 1,37E-05 | 1,61E-04  | 3,20E-06  | 4,06E-02  |
| Non-ren. secondary fuels           | MJ   | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00  | MND | 0,00E+00 | 0,00E+00 | 0,00E+00  | 0,00E+00  | 0,00E+00  |
| Use of net fresh water             | m³   | 5,40E-01 | 6,64E-04 | 5,90E-02 | 6,00E-01 | 7,37E-03 | 2,17E-05  | MND | 0,00E+00 | 3,41E-04 | 1,38E-02  | -6,18E-03 | -5,61E-02 |

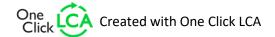
8) PER = Primary energy resources.







## **END OF LIFE – WASTE**


| Impact category     | Unit | A1       | A2       | А3       | A1-A3    | A4       | A5       | B1  | B2  | В3  | B4  | B5  | В6  | В7  | C1       | C2       | C3       | C4       | D        |
|---------------------|------|----------|----------|----------|----------|----------|----------|-----|-----|-----|-----|-----|-----|-----|----------|----------|----------|----------|----------|
| Hazardous waste     | kg   | 8,69E+00 | 8,27E-03 | 8,12E-01 | 9,51E+00 | 1,14E-01 | 1,49E-02 | MND | 0,00E+00 | 4,24E-03 | 2,14E-01 | 4,88E-03 | 1,48E-01 |
| Non-hazardous waste | kg   | 2,23E+02 | 1,55E-01 | 2,11E+01 | 2,44E+02 | 1,82E+00 | 1,63E+00 | MND | 0,00E+00 | 7,96E-02 | 6,05E+00 | 8,41E+00 | 3,33E+01 |
| Radioactive waste   | kg   | 8,66E-04 | 9,87E-07 | 1,81E-04 | 1,05E-03 | 1,13E-05 | 1,84E-06 | MND | 0,00E+00 | 5,06E-07 | 3,34E-06 | 1,24E-07 | 2,01E-05 |

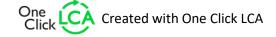
## **END OF LIFE – OUTPUT FLOWS**

| Impact category                  | Unit | A1       | A2       | А3       | A1-A3    | A4       | A5       | B1  | B2  | В3  | B4  | B5  | В6  | B7  | C1       | C2       | C3       | C4       | D        |
|----------------------------------|------|----------|----------|----------|----------|----------|----------|-----|-----|-----|-----|-----|-----|-----|----------|----------|----------|----------|----------|
| Components for re-use            | kg   | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | MND | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 |
| Materials for recycling          | kg   | 0,00E+00 | 0,00E+00 | 1,22E-02 | 1,22E-02 | 0,00E+00 | 2,75E+00 | MND | 0,00E+00 | 0,00E+00 | 3,79E+00 | 0,00E+00 | 0,00E+00 |
| Materials for energy rec         | kg   | 0,00E+00 | 0,00E+00 | 3,05E-03 | 3,05E-03 | 0,00E+00 | 2,77E-01 | MND | 0,00E+00 | 0,00E+00 | 5,02E+00 | 0,00E+00 | 0,00E+00 |
| Exported energy                  | MJ   | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | MND | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 |
| Exported energy –<br>Electricity | MJ   | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | MND | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 |
| Exported energy –                | MJ   | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | MND | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 |

## ENVIRONMENTAL IMPACTS – EN 15804+A1, CML / ISO 21930

| Impact category      | Unit                               | A1       | A2       | А3       | A1-A3    | A4       | A5       | B1  | B2  | В3  | B4  | B5  | В6  | B7  | C1       | C2       | C3       | C4       | D         |
|----------------------|------------------------------------|----------|----------|----------|----------|----------|----------|-----|-----|-----|-----|-----|-----|-----|----------|----------|----------|----------|-----------|
| Global Warming Pot.  | kg CO₂e                            | 6,15E+01 | 3,30E-01 | 9,32E+00 | 7,12E+01 | 5,87E+00 | 5,01E-01 | MND | 0,00E+00 | 1,69E-01 | 1,21E+01 | 1,54E-01 | -1,07E+00 |
| Ozone depletion Pot. | kg CFC <sub>-11</sub> e            | 4,96E-06 | 3,86E-09 | 1,29E-07 | 5,09E-06 | 6,77E-08 | 1,10E-09 | MND | 0,00E+00 | 1,98E-09 | 4,38E-09 | 4,56E-10 | 1,15E-08  |
| Acidification        | kg SO₂e                            | 2,22E-01 | 1,12E-03 | 3,58E-02 | 2,59E-01 | 9,60E-02 | 4,60E-04 | MND | 0,00E+00 | 5,74E-04 | 2,22E-03 | 1,21E-04 | -2,49E-03 |
| Eutrophication       | kg PO <sub>4</sub> ³e              | 4,39E-01 | 2,75E-04 | 1,77E-02 | 4,57E-01 | 1,15E-02 | 3,46E-04 | MND | 0,00E+00 | 1,41E-04 | 8,11E-04 | 1,84E-04 | 7,94E-03  |
| POCP ("smog")        | kg C <sub>2</sub> H <sub>4</sub> e | 2,09E-02 | 9,30E-05 | 2,94E-03 | 2,39E-02 | 5,00E-03 | 1,02E-04 | MND | 0,00E+00 | 4,77E-05 | 1,62E-04 | 3,18E-05 | -1,08E-03 |
| ADP-elements         | kg Sbe                             | 1,74E-03 | 1,04E-06 | 3,52E-05 | 1,78E-03 | 1,02E-05 | 8,32E-07 | MND | 0,00E+00 | 5,32E-07 | 2,07E-06 | 4,68E-08 | 1,41E-05  |
| ADP-fossil           | MJ                                 | 9,47E+02 | 4,67E+00 | 1,01E+02 | 1,05E+03 | 7,57E+01 | 1,23E+00 | MND | 0,00E+00 | 2,39E+00 | 2,72E+00 | 4,84E-01 | 1,68E-01  |








## **ADDITIONAL INDICATOR – GWP-GHG**

| Impact category       | Unit    | A1       | A2       | A3       | A1-A3    | A4       | A5       | B1  | B2  | В3  | B4  | B5  | В6  | В7  | C1       | C2       | С3       | C4       | D         |
|-----------------------|---------|----------|----------|----------|----------|----------|----------|-----|-----|-----|-----|-----|-----|-----|----------|----------|----------|----------|-----------|
| GWP-GHG <sup>9)</sup> | kg CO₂e | 6,13E+01 | 3,32E-01 | 9,03E+00 | 7,07E+01 | 5,90E+00 | 2,36E-01 | MND | 0,00E+00 | 1,70E-01 | 1,20E+01 | 1,59E-01 | -1,13E+00 |

<sup>9)</sup> This indicator includes all greenhouse gases excluding biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. In addition, the characterisation factors for the flows – CH4 fossil, CH4 biogenic and Dinitrogen monoxide – were updated. This indicator is identical to the GWP-total of EN 15804:2012+A2:2019 except that the characterisation factor for biogenic CO2 is set to zero.





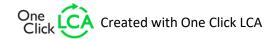


## **SCENARIO DOCUMENTATION**

## Manufacturing energy scenario documentation

| <u> </u>                                 |                                                                                                                                                                                                                                  |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Scenario parameter                       | Value                                                                                                                                                                                                                            |
| Electricity data source and quality      | Source 1: Market for electricity, medium voltage; China, East Grid; Ecoinvent 3.10.1  Source 2: Electricity production, photovoltaic, 3kWp slanted-roof installation, multi-Si, panel, mounted; China, Jiangsu; Ecoinvent 3.10.1 |
| Electricity kg CO2e / kWh                | <b>Source 1:</b> 0.86 <b>Source 2:</b> 0.0785                                                                                                                                                                                    |
| District heating data source and quality | -                                                                                                                                                                                                                                |
| District heating kg CO2e / kWh           | -                                                                                                                                                                                                                                |

## **Transport scenario documentation A4**


| Scenario parameter                                              | Value                                                                                                                                                    |
|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fuel and vehicle type. Eg, electric truck, diesel powered truck | Market for transport, freight, lorry, unspecified; World; Ecoinvent 3.10.1 + Market for transport, freight, sea, container ship; World; Ecoinvent 3.10.1 |
| Average transport distance, km                                  | 954 + 26042                                                                                                                                              |
| Capacity utilization (including empty return) %                 | -                                                                                                                                                        |
| Bulk density of transported products                            | -                                                                                                                                                        |
| Volume capacity utilization factor                              | -                                                                                                                                                        |

## **Installation scenario documentation A5**

| Scenario information                            | Value                           |
|-------------------------------------------------|---------------------------------|
| Ancillary materials for installation (specified | -                               |
| by material) / kg or other units as appropriate |                                 |
| Water use / m³                                  | -                               |
| Other resource use / kg                         | -                               |
| Quantitative description of energy type         | -                               |
| (regional mix) and consumption during the       |                                 |
| installation process / kWh or MJ                |                                 |
| Waste materials on the building site before     | Cardboard: 3,06 kg; Plastic:    |
| waste processing, generated by the product's    | 0,11 kg; Paper: 0,06 kg; Silica |
| installation (specified by type) / kg           | gel: 0,05 kg                    |
| Output materials (specified by type) as         | Recycling: 2,75 kg; Energy      |
| result of waste processing at the building      | recovery: 0,28 kg; Disposal:    |
| site e.g. collection for recycling, for energy  | 0,26 kg                         |
| recovery, disposal (specified by route) / kg    |                                 |
| Direct emissions to ambient air, soil and       | -                               |
| water / kg                                      |                                 |

## End of life scenario documentation

| Scenario information                                            | Value                                                                               |
|-----------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Collection process – kg collected separately                    | 10,9                                                                                |
| Collection process – kg collected with mixed construction waste | 0                                                                                   |
| Recovery process – kg for re-use                                | 0                                                                                   |
| Recovery process – kg for recycling                             | 3,8                                                                                 |
| Recovery process – kg for energy recovery                       | 5,0                                                                                 |
| Disposal (total) – kg for final deposition                      | 2,1                                                                                 |
| Scenario assumptions e.g. transportation                        | 100 km (Market for transport, freight, lorry, unspecified; World; Ecoinvent 3.10.1) |







## THIRD-PARTY VERIFICATION STATEMENT

EPD Hub declares that this EPD is verified in accordance with ISO 14025 by an independent, third-party verifier. The project report on the Life Cycle Assessment and the report(s) on features of environmental relevance are filed at EPD Hub. EPD Hub PCR and ECO Platform verification checklist are used.

EPD Hub is not able to identify any unjustified deviations from the PCR and EN 15802+A2 in the Environmental Product Declaration and its project report.

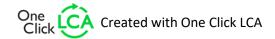
EPD Hub maintains its independence as a third-party body; it was not involved in the execution of the LCA or in the development of the declaration and has no conflicts of interest regarding this verification.

The company-specific data and upstream and downstream data have been examined as regards plausibility and consistency. The publisher is responsible for ensuring the factual integrity and legal compliance of this declaration.

The software used in creation of this LCA and EPD is verified by EPD Hub to conform to the procedural and methodological requirements outlined in ISO 14025:2010, ISO 14040/14044, EN 15804+A2, and EPD Hub Core Product Category Rules and General Program Instructions.

#### Verified tools

Tool verifier: Magaly Gonzalez Vazquez


Tool verification validity: 27 March 2025 - 26 March 2028

Lucas Rodriguez, as an authorized verifier acting for EPD Hub Limited

29.07.2025





