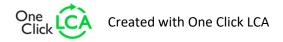


ENVIRONMENTAL PRODUCT DECLARATION

IN ACCORDANCE WITH EN 15804+A2 & ISO 14025


Excel Precast Green Concrete FL40LHG
Excel Precast Pte Ltd/Excel Precast Sdn Bhd

EPD HUB, HUB-3698

Published on 24.07.2025, last updated on 24.07.2025, valid until 24.01.2027

Life Cycle Assessment study has been performed in accordance with the requirements of EN 15804, EPD Hub PCR version 1.1 (5 Dec 2023) and JRC characterization factors EF 3.1.

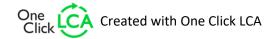
GENERAL INFORMATION

MANUFACTURER

Manufacturer	Excel Precast Pte Ltd/Excel Precast Sdn Bhd
Address	16 Kaki Bukit View, Kaki Bukit Techpark II, Singapore 415952.
	Lot 2671, Lot 2674, Lot 3639 & Lot 3640 Jalan Skudai-Pontian Kulai Johor Bahru, Malaysia 81500
Contact details	sales@excel-precast.com.sg
Website	https://www.excel-precast.com.sg/

EPD STANDARDS, SCOPE	AND VERIFICATION
Program operator	EPD Hub, hub@epdhub.com
Reference standard	EN 15804:2012+A2:2019/AC:2021 and ISO 14025
PCR	EPD Hub Core PCR Version 1.1, 5 Dec 2023
Sector	Construction product
Category of EPD	Third party verified EPD
Scope of the EPD	Cradle to gate with options, A4-A5, and modules C1-C4, D
EPD author	Yap Ee Gin
EPD verification	Independent verification of this EPD and data, according to ISO 14025: ☐ Internal verification ☐ External verification
EPD verifier	Imane Uald Lamkaddam as an authorized verifier for EPD Hub

This EPD is intended for business-to-business and/or business-to-consumer communication. The manufacturer has the sole ownership, liability, and responsibility for the EPD. EPDs within the same product category but from


different programs may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804 and if they are not compared in a building context.

PRODUCT

Product name	Excel Precast Green Concrete FL40LHG
Additional labels	
Product reference	
Place(s) of raw material origin	Malaysia
Place of production	Johor-Malaysia, Singapore
Place(s) of installation and use	Johor-Malaysia, Singapore
Period for data	April 2025 - May 2025
Averaging in EPD	Multiple factories
Variation in GWP-fossil for A1-A3 (%)	0
A1-A3 Specific data (%)	7,83

ENVIRONMENTAL DATA SUMMARY

Declared unit	1 m3 of Excel Precast Green Concrete FL40LHG
Declared unit mass	2374 kg
GWP-fossil, A1-A3 (kgCO ₂ e)	2,97E+02
GWP-total, A1-A3 (kgCO ₂ e)	2,98E+02
Secondary material, inputs (%)	0,02
Secondary material, outputs (%)	99,2
Total energy use, A1-A3 (kWh)	505
Net freshwater use, A1-A3 (m³)	1,2

PRODUCT AND MANUFACTURER

ABOUT THE MANUFACTURER

Excel Precast Pte Ltd was incorporated in 1999. The company's business objective is to supply precast concrete component for use in the construction industry. Excel Precast Pte Ltd also provides technical assistance to our clients in the development of precast construction methods for their Design & Build projects. This is achieved through our experienced and capable design team. To assist our clients in driving higher productivity and better quality for their projects, Excel Precast Pte Ltd also provides alternative proposals to convert projects originally designed for cast in-situ construction into precast method of construction.

We have 3 manufacturing plants at Singapore, Senai and Ulu Choh, Johor, Malaysia with production capacity is over 100,000 m3 per year.

PRODUCT DESCRIPTION

Ready-mixed green concrete formulated with environmentally responsible materials with a mixing of low heat cement, fine aggregates and coarse aggregates, water with chemical admixtures. This concrete product delivers exceptional performance while significantly reducing carbon emissions compared to the traditional mixes. Our ready-mix concrete offers superior compressive strength, consistent workability, and reliable curing times. This product ensures both long-term resilience and environmental compliance whether in building foundations, structural frames, or infrastructure components.

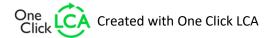
Further information can be found at: https://www.excel-precast.com.sg/

PRODUCT RAW MATERIAL MAIN COMPOSITION

Raw material category	Amount, mass %	Material origin
Metals	0	NA
Minerals	99,85	Malaysia
Fossil materials	0,15	Malaysia
Bio-based materials	0	NA

BIOGENIC CARBON CONTENT

Product's biogenic carbon content at the factory gate


Biogenic carbon content in product, kg C	0
Biogenic carbon content in packaging, kg C	0

FUNCTIONAL UNIT AND SERVICE LIFE

Declared unit	1 m3 of Excel Precast Green Concrete FL40LHG
Mass per declared unit	2374 kg
Functional unit	
Reference service life	

SUBSTANCES, REACH - VERY HIGH CONCERN

The product does not contain any REACH SVHC substances in amounts greater than 0,1 % (1000 ppm).

PRODUCT LIFE-CYCLE

SYSTEM BOUNDARY

This EPD covers the life-cycle modules listed in the following table.

Pro	duct st	tage	ge Assembly stage			Use stage End of life stage							Beyond the system boundaries						
A1	A2	А3	A4	A5	B1	B2	В3	B4	В5	В6	В7	C1	C2	С3	C4		D		
×	×	×	×	×	MND	MND	MND	MND	MND	MND	MND	×	×	×	×		×		
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction/ demolition	Transport	Waste processing	Disposal	Reuse	Recovery	Recycling	

Modules not declared = MND. Modules not relevant = MNR

MANUFACTURING AND PACKAGING (A1-A3)

The environmental impacts considered for the product stage cover the manufacturing of raw materials used in the production as well as packaging materials and other ancillary materials. Also, fuels used by machines, and handling of waste formed in the production processes at the manufacturing facilities are included in this stage. The study also considers the material losses occurring during the manufacturing processes as well as losses during electricity transmission.

A market-based approach is used in modelling the electricity mix utilized in the factory.

The environmental impacts associated with the product stage have been evaluated, with a primary focus on raw material extraction and processing. The analysis also considers energy consumption and waste generation during the manufacturing phase.

Raw materials are sourced from third-party suppliers in Malaysia and transported to the production facility by road using trucks. The transportation impact assessment reflects this supply chain setup.

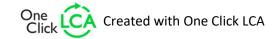
The manufacturing process is designed as a closed-loop system. Any raw material waste generated during production is recycled and reintegrated into the utilization process, ensuring zero raw material loss.

TRANSPORT AND INSTALLATION (A4-A5)

Transportation impacts occurred from final products delivery to construction site (A4) cover fuel direct exhaust emissions, environmental impacts of fuel production, as well as related infrastructure emissions.

The transportation-to-site scenario is analyzed based on local conditions and statistical data representative of the market area in which the product is sold. The analysis considers typical transport distances, vehicle types, and load capacities to reflect realistic logistics operations.

Installation at the construction site is considered to have 0.1% product loss, based on project experience.

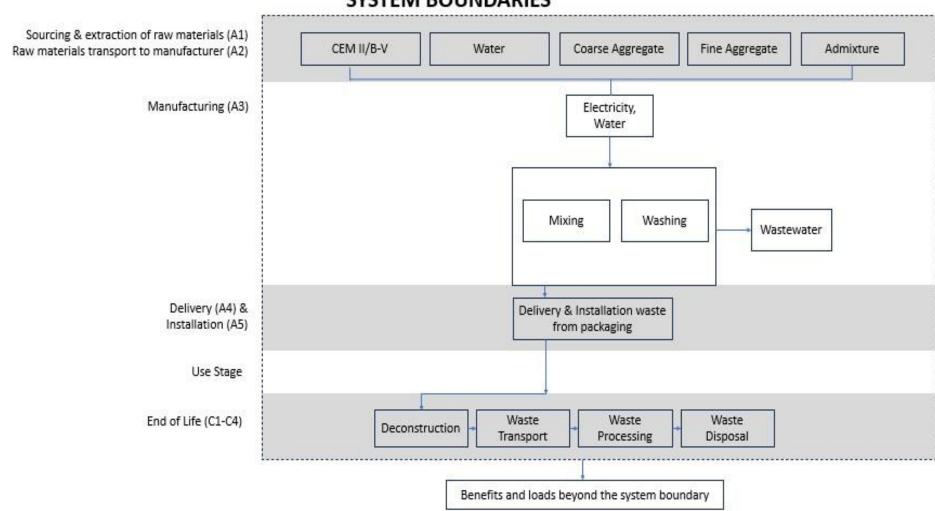

PRODUCT USE AND MAINTENANCE (B1-B7)

Product use and maintenance are not included in this study. Air, soil, and water impacts during the use phase have not been studied.

PRODUCT END OF LIFE (C1-C4, D)

C1 includes product deconstruction and demolition. The concrete product becomes part of the structure and is removed during demolition. Fuel consumption is excluded due to project variability. In C2 stage, the end-of-life product is assumed to have the same mass as declared and is transported to the nearest facility. An average distance of 40 km by lorry is used, based on local conditions. For C3, waste concrete is processed for recycling. In Singapore, approximately 99% of concrete is recycled into recycled concrete aggregate (RCA), with 1% sent to landfill. The final disposal of non-recycled concrete is analyzed at stage C4.

Benefits beyond the system boundary are accounted for in module D. RCA is assumed to replace virgin aggregates in concrete production, and the avoided impacts are credited here. Beside the product, the benefits and loads from biogenic carbon and fossil packing materials are analyzed based on reliable data source.



MANUFACTURING PROCESS

SYSTEM BOUNDARIES

LIFE-CYCLE ASSESSMENT

CUT-OFF CRITERIA

The study does not exclude any modules or processes which are stated mandatory in the reference standard and the applied PCR. The study does not exclude any hazardous materials or substances. The study includes all major raw material and energy consumption. All inputs and outputs of the unit processes, for which data is available for, are included in the calculation. There is no neglected unit process more than 1% of total mass or energy flows. The module specific total neglected input and output flows also do not exceed 5% of energy usage or mass.

The production of capital equipment, construction activities, and infrastructure, maintenance and operation of capital equipment, personnel-related activities, energy and water use related to company management and sales activities are excluded.

VALIDATION OF DATA

Data collection for production, transport, and packaging was conducted using time and site-specific information, as defined in the general information section on page 1 and 2. Upstream process calculations rely on generic data as defined in the Bibliography section. Manufacturer-provided specific and generic data were used for the product's manufacturing stage. The analysis was performed in One Click LCA EPD Generator, with the 'Cut-Off, EN 15804+A2' allocation method, and characterization factors according to EN 15804:2012+A2:2019/AC:2021 and JRC EF 3.1.

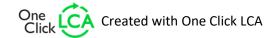
ALLOCATION, ESTIMATES AND ASSUMPTIONS

Allocation is required if some material, energy, and waste data cannot be measured separately for the product under investigation. All allocations are done as per the reference standards and the applied PCR. In this study, allocation has been done in the following ways:

Data type	Allocation
Raw materials	Allocated by mass or volume
Packaging material	Not applicable
Ancillary materials	Allocated by mass or volume
Manufacturing energy and waste	Allocated by mass or volume

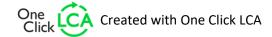
PRODUCT & MANUFACTURING SITES GROUPING

Type of grouping	Multiple factories
Grouping method	Based on worst-case results
Variation in GWP-fossil for A1-A3, %	0


Single product produced by the same manufacturer in multiple factories, located in Malaysia and Singapore, Difference caused by regional situation (e.g. electricity grid factor) was considered and the relevant factor was chosen as the worse-case one (E.g. Malaysian grid emission factor).

LCA SOFTWARE AND BIBLIOGRAPHY

This EPD has been created using One Click LCA EPD Generator. The LCA and EPD have been prepared according to the reference standards and ISO 14040/14044. The EPD Generator uses Ecoinvent v3.10.1 and One Click LCA databases as sources of environmental data. Allocation used in Ecoinvent 3.10.1 environmental data sources follow the methodology 'allocation, Cutoff, EN 15804+A2'.


ENVIRONMENTAL IMPACT DATA

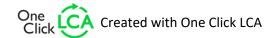
The estimated impact results are only relative statements which do not indicate the end points of the impact categories, exceeding threshold values, safety margins or risks.

CORE ENVIRONMENTAL IMPACT INDICATORS - EN 15804+A2, EF 3.1

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4	D
GWP – total ¹⁾	kg CO₂e	2,74E+02	2,13E+01	2,24E+00	2,98E+02	1,66E+01	3,14E-01	MND	8,64E-03	1,02E+01	1,03E+01	1,49E-01	-2,29E+01						
GWP – fossil	kg CO₂e	2,74E+02	2,13E+01	2,21E+00	2,97E+02	1,66E+01	3,14E-01	MND	8,53E-03	1,02E+01	1,03E+01	1,49E-01	-2,28E+01						
GWP – biogenic	kg CO₂e	2,31E-01	4,82E-03	1,37E-02	2,49E-01	3,77E-03	0,00E+00	MND	6,32E-05	2,32E-03	-1,05E-03	-4,73E-05	-2,18E-02						
GWP – LULUC	kg CO₂e	6,16E-02	9,52E-03	1,13E-02	8,24E-02	7,44E-03	8,98E-05	MND	4,77E-05	4,58E-03	1,06E-03	8,49E-05	-2,06E-02						
Ozone depletion pot.	kg CFC-11e	1,12E-06	3,14E-07	7,77E-08	1,52E-06	2,46E-07	1,76E-09	MND	1,62E-10	1,51E-07	1,58E-07	4,30E-09	-1,86E-07						
Acidification potential	mol H⁺e	8,37E-01	7,26E-02	1,08E-02	9,20E-01	5,67E-02	9,77E-04	MND	4,16E-05	3,49E-02	9,30E-02	1,05E-03	-1,40E-01						
EP-freshwater ²⁾	kg Pe	3,05E-02	1,66E-03	9,87E-04	3,32E-02	1,30E-03	3,44E-05	MND	3,90E-06	7,97E-04	2,97E-04	1,22E-05	-7,15E-03						
EP-marine	kg Ne	2,35E-01	2,38E-02	1,84E-03	2,61E-01	1,86E-02	2,79E-04	MND	6,26E-06	1,15E-02	4,31E-02	4,02E-04	-3,33E-02						
EP-terrestrial	mol Ne	2,65E+00	2,60E-01	1,65E-02	2,93E+00	2,03E-01	3,13E-03	MND	5,99E-05	1,25E-01	4,72E-01	4,38E-03	-4,04E-01						
POCP ("smog") ³)	kg NMVOCe	7,35E-01	1,07E-01	4,97E-03	8,47E-01	8,36E-02	9,31E-04	MND	1,80E-05	5,14E-02	1,41E-01	1,57E-03	-1,12E-01						
ADP-minerals & metals ⁴)	kg Sbe	1,38E-03	5,94E-05	2,78E-06	1,44E-03	4,64E-05	1,49E-06	MND	6,79E-09	2,86E-05	3,69E-06	2,36E-07	-1,26E-04						
ADP-fossil resources	MJ	1,41E+03	3,09E+02	2,57E+01	1,75E+03	2,41E+02	1,99E+00	MND	9,92E-02	1,49E+02	1,35E+02	3,65E+00	-2,80E+02						
Water use ⁵⁾	m³e depr.	3,93E+01	1,53E+00	6,91E-01	4,15E+01	1,19E+00	4,27E-02	MND	2,73E-03	7,34E-01	3,37E-01	1,05E-02	-3,54E+01						

¹⁾ GWP = Global Warming Potential; 2) EP = Eutrophication potential. Required characterisation method and data are in kg P-eq. Multiply by 3,07 to get PO4e; 3) POCP = Photochemical ozone formation; 4) ADP = Abiotic depletion potential; 5) EN 15804+A2 disclaimer for Abiotic depletion and Water use and optional indicators except Particulate matter and Ionizing radiation, human health. The results of these environmental impact indicators shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

ADDITIONAL (OPTIONAL) ENVIRONMENTAL IMPACT INDICATORS – EN 15804+A2, EF 3.1


Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4	D
Particulate matter	Incidence	8,46E-06	2,13E-06	4,24E-08	1,06E-05	1,67E-06	1,23E-08	MND	1,09E-10	1,02E-06	2,01E-05	2,40E-08	-2,14E-06						
Ionizing radiation ⁶⁾	kBq 11235e	3,71E+00	2,69E-01	2,27E-02	4,00E+00	2,10E-01	4,21E-03	MND	1,29E-05	1,29E-01	5,97E-02	2,29E-03	-2,22E+00						
Ecotoxicity (freshwater)	CTUe	4,42E+02	4,37E+01	4,20E+01	5,28E+02	3,41E+01	5,62E-01	MND	1,86E-02	2,10E+01	7,42E+00	3,06E-01	-6,59E+01						
Human toxicity, cancer	CTUh	4,85E-08	3,51E-09	3,68E-10	5,24E-08	2,75E-09	5,51E-11	MND	6,87E-13	1,69E-09	1,06E-09	2,74E-11	-6,26E-09						
Human tox. non-cancer	CTUh	1,75E-06	2,00E-07	1,65E-08	1,97E-06	1,56E-07	2,12E-09	MND	3,84E-11	9,62E-08	1,68E-08	6,29E-10	-1,81E-07						
SQP ⁷⁾	-	2,54E+03	3,11E+02	3,50E+00	2,85E+03	2,43E+02	3,10E+00	MND	1,22E-02	1,50E+02	9,44E+00	7,18E+00	-2,65E+02						

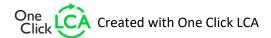
⁶⁾ EN 15804+A2 disclaimer for Ionizing radiation, human health. This impact category deals mainly with the eventual impact of low-dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator; 7) SQP = Land use related impacts/soil quality.

USE OF NATURAL RESOURCES

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4	D
Renew. PER as energy ⁸⁾	MJ	8,45E+01	4,23E+00	1,97E+00	9,07E+01	3,31E+00	9,40E-02	MND	7,29E-03	2,04E+00	8,53E-01	3,52E-02	-2,69E+01						
Renew. PER as material	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Total use of renew. PER	MJ	8,45E+01	4,23E+00	1,97E+00	9,07E+01	3,31E+00	9,40E-02	MND	7,29E-03	2,04E+00	8,53E-01	3,52E-02	-2,69E+01						
Non-re. PER as energy	MJ	1,39E+03	3,09E+02	2,57E+01	1,73E+03	2,41E+02	1,97E+00	MND	9,92E-02	1,49E+02	1,35E+02	3,65E+00	-2,80E+02						
Non-re. PER as material	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Total use of non-re. PER	MJ	1,39E+03	3,09E+02	2,57E+01	1,73E+03	2,41E+02	1,97E+00	MND	9,92E-02	1,49E+02	1,35E+02	3,65E+00	-2,80E+02						
Secondary materials	kg	4,17E-01	1,32E-01	9,55E-03	5,58E-01	1,03E-01	6,61E-04	MND	8,47E-06	6,32E-02	5,60E-02	9,17E-04	-3,15E-01						
Renew. secondary fuels	MJ	7,55E-03	1,67E-03	3,14E-05	9,25E-03	1,31E-03	1,06E-05	MND	5,20E-08	8,03E-04	1,46E-04	1,90E-05	-2,17E-03						
Non-ren. secondary fuels	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Use of net fresh water	m³	1,14E+00	4,57E-02	1,44E-02	1,20E+00	3,57E-02	1,23E-03	MND	6,37E-05	2,20E-02	8,91E-03	3,79E-03	-8,42E-01						

⁸⁾ PER = Primary energy resources.

END OF LIFE – WASTE

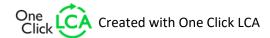

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	С3	C4	D
Hazardous waste	kg	7,61E+00	5,23E-01	2,34E-01	8,37E+00	4,09E-01	8,78E-03	MND	8,94E-04	2,52E-01	1,50E-01	4,03E-03	-2,12E+00						
Non-hazardous waste	kg	1,58E+02	9,69E+00	8,02E+01	2,47E+02	7,57E+00	2,55E-01	MND	1,90E-02	4,66E+00	2,04E+00	9,20E-02	-3,93E+01						
Radioactive waste	kg	9,13E-04	6,59E-05	5,30E-06	9,84E-04	5,15E-05	1,04E-06	MND	2,24E-09	3,17E-05	1,46E-05	5,59E-07	-5,41E-04						

END OF LIFE – OUTPUT FLOWS

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4	D
Components for re-use	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Materials for recycling	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	2,35E+03	0,00E+00	0,00E+00						
Materials for energy rec	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Exported energy	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Exported energy – Electricity	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Exported energy – Heat	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						

ENVIRONMENTAL IMPACTS – EN 15804+A1, CML / ISO 21930

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4	D
Global Warming Pot.	kg CO₂e	2,73E+02	2,12E+01	2,23E+00	2,97E+02	1,65E+01	3,13E-01	MND	8,62E-03	1,02E+01	1,02E+01	1,47E-01	-2,27E+01						
Ozone depletion Pot.	kg CFC-11e	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	MND	MND	MND	MND	MND	MND	MND	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Acidification	kg SO₂e	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	MND	MND	MND	MND	MND	MND	MND	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Eutrophication	kg PO ₄ ³e	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	MND	MND	MND	MND	MND	MND	MND	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
POCP ("smog")	kg C₂H₄e	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	MND	MND	MND	MND	MND	MND	MND	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
ADP-elements	kg Sbe	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	MND	MND	MND	MND	MND	MND	MND	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
ADP-fossil	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	MND	MND	MND	MND	MND	MND	MND	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00



ENVIRONMENTAL IMPACTS – GWP-GHG

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
GWP-GHG ⁹⁾	kg CO₂e	2,74E+02	2,13E+01	2,22E+00	2,97E+02	1,66E+01	3,14E-01	MND	8,58E-03	1,02E+01	1,03E+01	1,49E-01	-2,28E+01						

⁹⁾ This indicator includes all greenhouse gases excluding biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product as defined by IPCC AR 5 (IPCC 2013). In addition, the characterisation factors for the flows - CH4 fossil, CH4 biogenic and Dinitrogen monoxide - were updated in line with the guidance of IES PCR 1.2.5 Annex 1. This indicator is identical to the GWP-total of EN 15804:2012+A2:2019 except that the characterization factor for biogenic CO2 is set to zero.

THIRD-PARTY VERIFICATION STATEMENT

VERIFICATION PROCESS FOR THIS EPD

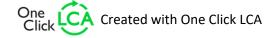
This EPD has been verified in accordance with ISO 14025 by an independent, third-party verifier by reviewing results, documents and compliancy with reference standard, ISO 14025 and ISO 14040/14044, following the process and checklists of the program operator for:

- This Environmental Product Declaration
- The Life-Cycle Assessment used in this EPD
- The digital background data for this EPD

Why does verification transparency matter? Read more online This EPD has been generated by One Click LCA EPD generator, which has been verified and approved by the EPD Hub.

THIRD-PARTY VERIFICATION STATEMENT

I hereby confirm that, following detailed examination, I have not established any relevant deviations by the studied Environmental Product Declaration (EPD), its LCA and project report, in terms of the data collected and used in the LCA calculations, the way the LCA-based calculations have been carried out, the presentation of environmental data in the EPD, and other additional environmental information, as present with respect to the procedural and methodological requirements in ISO 14025:2010 and reference standard.


I confirm that the company-specific data has been examined as regards plausibility and consistency; the declaration owner is responsible for its factual integrity and legal compliance.

I confirm that I have sufficient knowledge and experience of construction products, this specific product category, the construction industry, relevant standards, and the geographical area of the EPD to carry out this verification.

I confirm my independence in my role as verifier; I have not been involved in the execution of the LCA or in the development of the declaration and have no conflicts of interest regarding this verification.

Imane Uald Lamkaddam as an authorized verifier for EPD Hub Limited 24.07.2025

