

ENVIRONMENTAL PRODUCT DECLARATION

IN ACCORDANCE WITH EN 15804+A2 & ISO 14025

Steel Roof Drains

VILPE Oy

EPD HUB, HUB-5058

Published on 23.01.2026, last updated on 23.01.2026, valid until 23.07.2027

Life Cycle Assessment study has been performed in accordance with the requirements of EN 15804, EPD Hub PCR version 1.2 (24 Mar 2025) and JRC characterization factors EF 3.1.

Created with One Click LCA

GENERAL INFORMATION

MANUFACTURER

Manufacturer	VILPE Oy
Address	Kauppatie 9, FI-65610 Mustasaari
Contact details	sales@vilpe.com
Website	https://www.vilpe.com/

EPD STANDARDS, SCOPE AND VERIFICATION

Program operator	EPD Hub, hub@epdhub.com
Reference standard	EN 15804:2012+A2:2019/AC:2021 and ISO 14025
PCR	EPD Hub Core PCR Version 1.2, 24 Mar 2025
Sector	Manufactured product
Category of EPD	Design phase EPD
Parent EPD number	-
Scope of the EPD	Cradle to gate with options, A4-A5, and modules C1-C4, D
EPD author	Milja Sarapaa, VILPE Oy
EPD verification	Independent verification of this EPD and data, according to ISO 14025: <input type="checkbox"/> Internal verification <input checked="" type="checkbox"/> External verification
EPD verifier	Imane Uald Lamkaddam as an authorized verifier for EPD Hub

This EPD is intended for business-to-business and/or business-to-consumer communication. The manufacturer has the sole ownership, liability, and responsibility for the EPD. EPDs within the same product category but from different programs may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804 and if they are not compared in a building context.

PRODUCT

Product name	Steel Roof Drains
Additional labels	-
Product reference	-
Place(s) of raw material origin	Finland, Belgium
Place of production	Mustasaari, Finland
Place(s) of installation and use	Finland
Period for data	01/05/2025-31/10/2025
Averaging in EPD	Multiple products
Variation in GWP-fossil for A1-A3 (%)	-31,14% / -3,95%
GTIN (Global Trade Item Number)	-
NOBB (Norwegian Building Product Database)	(coming soon)
A1-A3 Specific data (%)	5,92

ENVIRONMENTAL DATA SUMMARY

Declared unit	1 kg
Declared unit mass	1 kg
Mass of packaging	-
GWP-fossil, A1-A3 (kgCO ₂ e)	9,12
GWP-total, A1-A3 (kgCO ₂ e)	5,06
Secondary material, inputs (%)	40,7
Secondary material, outputs (%)	95,7
Total energy use, A1-A3 (kWh)	73,8
Net freshwater use, A1-A3 (m ³)	0,1

PRODUCT AND MANUFACTURER

ABOUT THE MANUFACTURER

VILPE Oy is a Finnish family-owned company that develops and manufactures ventilation and roofing solutions for the construction industry. The company's operations are based on customer-oriented and innovative product development. Our high quality VILPE® products bring better indoor air quality, energy efficiency and longevity of structures to all spaces and thus improve people's quality of life. VILPE represents safe construction and living, which reinforces the company's commitment to quality and reliability.

PRODUCT DESCRIPTION

VILPE's range of roof drains is complemented by metal roof drains. The new roof drains are made of acid-resistant steel (A4 / 316) and are designed to withstand even the most demanding climatic conditions. The roof drain flange is ready-primed to facilitate fastening. Roof drains are needed on flat roofs, where rainwater is directed inwards on the roof and is discharged by the roof drains into a leader or downspout. A wide range of accessories, including heating elements, plastic leaf gratings and condensation insulation is available for metal roof drains. The builder can always tailor the whole setup to the site. Accessories can be connected to roof drains at the factory during assembly, or the customer can assemble them themselves. Roof drains offer flexibility, as metal roof drains can be cut to fit the dimensions of the area. Note: an exception is the C-90 200 roof drain, which is installed as-is on renovation sites.

Metal roof drains are suitable for all gently sloping roofs. The products can also replace old roof drains, making them an excellent choice for renovation sites. Model A roof drains have a drain bowl. They are suitable for sites where water volume dimensioning requires greater flow through the roof drain, as model A roof drains have a larger filter than model C roof drains of a similar size. There is no drain bowl in model C roof drains. The pipe sizes of the roof drains are 75, 110 or 160 mm, and different lengths are available for them,

starting from 350 mm. Roof drains have been designed and tested in accordance with the SFS EN 1253-2 standard. The tests include mechanical stress on grating and drain, overpressure with water, underpressure with air, and flow rate measurements with and without a grating.

Acid-resistant steel drain, model A: A roof drain with primed flanging for gently sloping roofs. Model A roof drains have a collecting basin, and Model A leaf grating is included.

Diameter: Ø 75 / Ø 110 / Ø 160

Model: 350mm/600mm/750mm/1000mm

Acid-resistant steel drain, model C: A roof drain with primed flanging for gently sloping roofs. Model C leaf grating is included.

Diameter: Ø 75 / Ø 110 / Ø 160

Model: 350mm/600mm/750mm/1000mm

Acid-resistant steel renovation drain, model A Ø 42: Renovation drain with primed flanging for gently sloping roofs. Used when one does not want to replace an existing roof drain. The renovation drain is installed into an existing Ø 50 roof drain. Model A leaf grating is included.

Acid-resistant steel renovation drain, model C Ø 90: Renovation drain with primed flanging for gently sloping roofs. Used when one does not want to replace an existing roof drain. The renovation drain is installed into an existing Ø 110 roof drain. Model C leaf grating is included.

Acid-resistant vapor barrier roof drain Ø 110: Roof drain with primed vapor barrier flange. The actual roof drain is installed inside the vapor barrier drain. Contents: Exhaust pipe seal, pass-through, and protective housing for heating cable, air discharge from the lower end of the protective pipe.

Condensation insulation for model A: Prevents condensation in roof drains. The insulation material should be installed outside the pipe and around the collecting basin.

Dimensions: Insulation thickness 13 mm.

Diameter: Ø 75 / Ø 110 / Ø 160

Model: 350mm/600mm/750mm/1000mm

Condensation insulation for model C: Prevents condensation in roof drains.

The insulation material should be installed outside the pipe.

Dimensions: Insulation thickness 13 mm.

Diameter: Ø 75 / Ø 110 / Ø 160

Model: 350mm/600mm/750mm/1000mm

Bitumen flange for roof drain: Factory-installed bitumen flange to speed up installation on bitumen roofs. Also ensures waterproof roof drain installation.

Dimensions: 500 x 500 mm.

Model: 75-90mm/160A/110mm

Further information can be found at:

<https://www.vilpe.com/>

PRODUCT RAW MATERIAL MAIN COMPOSITION

Raw material category	Amount, mass %	Material origin
Metals	94,28 %	Finland
Minerals	-	-
Fossil materials	5,72 %	Belgium
Bio-based materials	-	-

BIOGENIC CARBON CONTENT

Product's biogenic carbon content at the factory gate

Biogenic carbon content in product, kg C	0
Biogenic carbon content in packaging, kg C	1,073

FUNCTIONAL UNIT AND SERVICE LIFE

Declared unit	1kg
Mass per declared unit	1 kg
Functional unit	-
Reference service life	-

SUBSTANCES, REACH - VERY HIGH CONCERN

The product does not contain any REACH SVHC substances in amounts greater than 0,1 % (1000 ppm).

PRODUCT LIFE-CYCLE

SYSTEM BOUNDARY

This EPD covers the life-cycle modules listed in the following table.

Product stage		Assembly stage		Use stage							End of life stage				Beyond the system boundaries			
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D		
	x	x	x	x	ND	ND	ND	ND	ND	ND	ND	x	x	x	x		x	
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction/ demolition	Transport	Waste processing	Disposal	Reuse	Recovery	Recycling

Not declared = ND.

MANUFACTURING AND PACKAGING (A1-A3)

The environmental impacts considered for the product stage cover the manufacturing of raw materials used in the production as well as packaging materials and other ancillary materials. Also, fuels used by machines, and handling of waste formed in the production processes at the manufacturing facilities are included in this stage. The study also considers the material losses occurring during the manufacturing processes as well as losses during electricity transmission.

A market-based approach is used in modelling the electricity mix utilized in the factory.

Steel Roof drains of VILPE Oy are manufactured at the Vantaa site in Finland. Plastic gratings are manufactured at the Mustasaari site. The production process of grating consists of raw material delivery, injection molding, quality inspection, and packaging. During injection molding, the raw material is plasticized, injected into the mold, cooled, and removed from the mold. The bodies of steel roof drains are manufactured by a subcontractor in Finland using deep drawing and laser cutting. In Vantaa, the body of roof drain is assembled and packaged. According to customer preferences and case-by-case requirements, some of them are fitted with a bitumen flange by flaming, and some are cut to specified lengths. Production requires electricity and heat. About 50% of the electricity comes from the production facility's own solar power plant, and the rest is from nuclear electricity.

The use of green energy in manufacturing is demonstrated through contractual instruments (GOs, RECs), and its use is ensured throughout the validity period of this EPD.

TRANSPORT AND INSTALLATION (A4-A5)

Transportation impacts occurred from final products delivery to construction site (A4) cover fuel direct exhaust emissions, environmental impacts of fuel production, as well as related infrastructure emissions.

The average distribution distance is calculated as a weighted average of the significant sales volumes. Products are transported in full pallets. During installation, the disposal of packaging material is included in the estimate. Roof drains are packed in cardboard boxes. The amount of packaging material varies slightly depending on the type and size of the Roof drain. After installation, the packaging material is transported by truck to a recycling facility. The average distance to a recycling facility in Finland has been used.

Scenario estimates have employed average recycling methods and practices. There is no material waste during installation. The energy consumption during installation, mainly consisting of the use of a drill, has been excluded from the calculations as it is assumed to be insignificant per examined product unit.

PRODUCT USE AND MAINTENANCE (B1-B7)

This EPD does not cover the use phase.

Air, soil, and water impacts during the use phase have not been studied.

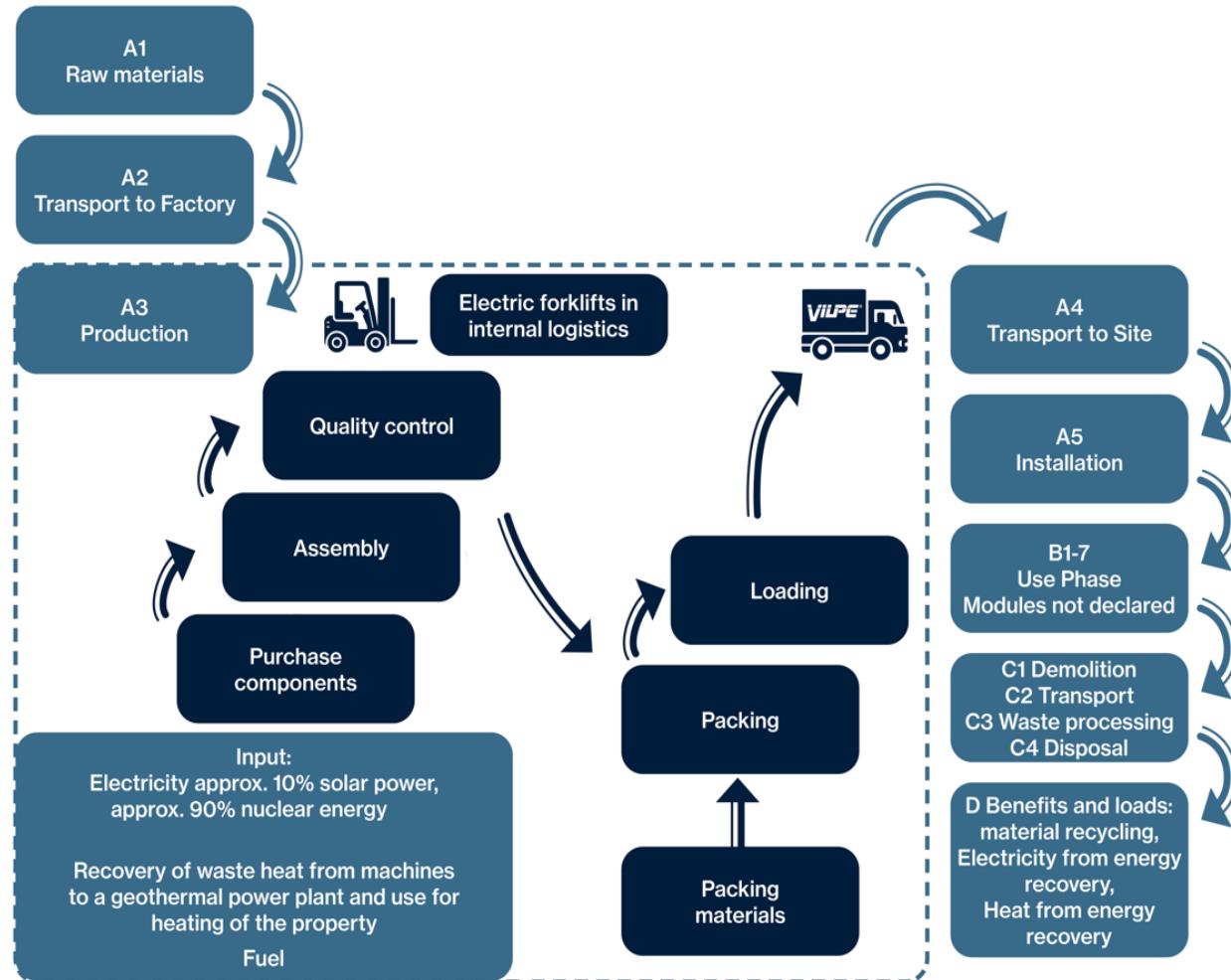
PRODUCT END OF LIFE (C1-C4, D)

The end-of-life stage consists of the following modules:

C1: Deconstruction of the product

C2: Transportation of the discarded product

C3: Waste processing


C4: Disposal

The EOL-scenario represents the most probable option in Finland and is based on local waste management scenarios. The average distance to waste treatment facilities in Finland has been used for waste transportation distance. At the end of its service life, the product can be dismantled from its installation environment. It is assumed in the calculation that the product is further disassembled into parts and the different waste fractions are processed separately. It is assumed that plastic and rubber waste (PP, EPDM) ends up entirely in incineration (100%). For steel, a treatment method of 95% recycling and 5% landfill is assumed (source: World Stainless 2024).

The benefits and loads of incineration and recycling are included in Module D. This covers loads from the incineration of plastic and rubber (PP, EPDM) as well as benefits in the form of heat and electricity generated from incineration. For steel, loads include the recycling process. The benefit of steel recycling is avoiding primary steel production (recycled). The use of secondary

material (0.2 kg/kg) is not included in the calculations. For cardboard, loads include the recycling process (use of secondary materials: 0.98 kg/kg is not included in the calculations) and the incineration process. Benefits include the use of secondary materials and heat and electricity from incineration. For wooden pallets, loads include the recycling process (use of secondary materials: 1.17 kg/unit, or 4.68%, is not included in the calculations) and the incineration process. Benefits include the use of secondary materials and heat and electricity from incineration. All assumptions follow current recycling practices in Finland.

MANUFACTURING PROCESS

LIFE-CYCLE ASSESSMENT

CUT-OFF CRITERIA

The study does not exclude any modules or processes which are stated mandatory in the reference standard and the applied PCR. The study does not exclude any hazardous materials or substances. The study includes all major raw material and energy consumption. All inputs and outputs of the unit processes, for which data is available for, are included in the calculation. There is no neglected unit process more than 1% of total mass or energy flows. The module specific total neglected input and output flows also do not exceed 5% of energy usage or mass.

The production of capital equipment, construction activities, and infrastructure, maintenance and operation of capital equipment, personnel-related activities, energy and water use related to company management and sales activities are excluded.

Since the combined amount of ancillary materials including added water to the closed system is less than 1% and no REACH chemicals have been used, they have been excluded from the calculation. More details in attachments. Energy consumption during the installation is very small (drilling machine) that it is not included to the calculations

VALIDATION OF DATA

Data collection for production, transport, and packaging was conducted using time and site-specific information, as defined in the general information section on page 1 and 2. Upstream process calculations rely on generic data as defined in the Bibliography section. Manufacturer-provided specific and generic data were used for the product's manufacturing stage. The analysis was performed in One Click LCA EPD Generator, with the 'Cut-Off, EN 15804+A2' allocation method, and characterization factors according to EN 15804:2012+A2:2019/AC:2021 and JRC EF 3.1.

ALLOCATION, ESTIMATES AND ASSUMPTIONS

Allocation is required if some material, energy, and waste data cannot be measured separately for the product under investigation. All allocations are done as per the reference standards and the applied PCR. In this study, allocation has been done in the following ways:

Data type	Allocation
Raw materials	Partly allocated by mass or volume
Packaging material	Allocated by mass or volume
Ancillary materials	Allocated by mass or volume
Manufacturing energy and waste	Allocated by mass or volume

PRODUCT & MANUFACTURING SITES GROUPING

Type of grouping	Multiple products
Grouping method	Based on a representative product
Variation in GWP-fossil for A1-A3, %	-31,14% / -3,95%

The average was calculated for 26 similar products, and to ensure adequate precision in the range of variation, 5 products were selected for the analysis. These products represent different size categories and the extremes in terms of packaging content scope. The product that most accurately reflected the average characteristics was designated as the representative product. The primary material is comparable across the products, with the most significant

differences arising in size, weight, and packaging materials. The intended use of the products is consistent, aligning with the requirements of the averaging methodology. The transportable mass, including packaging materials, varies across the products due to differences in their dimensions. While the end-of-life stages are broadly similar, variations occur based on the quantity of packaging material, product size, and specific components included with the products. The analysis concluded that all products fall within the same average range for A1–A3 Global Warming Potential (GWP).

LCA SOFTWARE AND BIBLIOGRAPHY

This EPD has been created using One Click LCA EPD Generator for EPD Hub V3 and EPD Process Certification v3.2.3. The LCA and EPD have been prepared according to the reference standards and ISO 14040/14044. The EPD Generator uses Ecoinvent v3.10.1/3.11 and One Click LCA databases as sources of environmental data. Allocation used in Ecoinvent 3.10.1/3.11 environmental data sources follow the methodology 'allocation, Cut-off, EN 15804+A2'.

ENVIRONMENTAL IMPACT DATA

The estimated impact results are only relative statements which do not indicate the end points of the impact categories, exceeding threshold values, safety margins or risks.

CORE ENVIRONMENTAL IMPACT INDICATORS – EN 15804+A2, EF 3.1

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
GWP – total ¹⁾	kg CO ₂ e	7,28E+00	9,93E-02	-2,32E+00	5,06E+00	1,03E-01	4,32E+00	ND	0,00E+00	5,38E-03	1,70E-01	0,00E+00	-2,66E+00						
GWP – fossil	kg CO ₂ e	7,11E+00	9,93E-02	1,90E+00	9,12E+00	1,03E-01	6,98E-02	ND	0,00E+00	5,38E-03	1,70E-01	0,00E+00	-2,65E+00						
GWP – biogenic	kg CO ₂ e	1,56E-01	8,63E-06	-4,25E+00	-4,09E+00	2,18E-05	4,25E+00	ND	0,00E+00	1,13E-06	-4,43E-05	0,00E+00	0,00E+00						
GWP – LULUC	kg CO ₂ e	8,59E-03	3,76E-05	2,55E-02	3,42E-02	3,89E-05	5,27E-05	ND	0,00E+00	2,02E-06	2,57E-05	0,00E+00	-4,46E-03						
Ozone depletion pot.	kg CFC-11e	1,66E-07	1,99E-09	6,67E-08	2,34E-07	2,08E-09	9,81E-10	ND	0,00E+00	1,08E-10	3,03E-10	0,00E+00	-1,00E-08						
Acidification potential	mol H ⁺ e	4,31E-02	3,67E-04	1,18E-02	5,53E-02	3,34E-04	4,24E-04	ND	0,00E+00	1,74E-05	2,63E-04	0,00E+00	-1,72E-02						
EP-freshwater ²⁾	kg Pe	5,65E-03	6,63E-06	5,80E-04	6,23E-03	6,97E-06	2,52E-05	ND	0,00E+00	3,63E-07	1,33E-05	0,00E+00	-1,35E-03						
EP-marine	kg Ne	6,86E-03	1,20E-04	3,74E-03	1,07E-02	1,13E-04	5,88E-04	ND	0,00E+00	5,90E-06	6,37E-05	0,00E+00	-2,75E-03						
EP-terrestrial	mol Ne	6,79E-02	1,31E-03	3,35E-02	1,03E-01	1,23E-03	1,64E-03	ND	0,00E+00	6,42E-05	7,12E-04	0,00E+00	-2,94E-02						
POCP ("smog") ³⁾	kg NMVOCe	2,33E-02	5,52E-04	1,07E-02	3,45E-02	5,44E-04	5,47E-04	ND	0,00E+00	2,83E-05	2,07E-04	0,00E+00	-9,87E-03						
ADP-minerals & metals ⁴⁾	kg Sbe	2,40E-04	2,71E-07	7,48E-05	3,15E-04	2,86E-07	2,18E-07	ND	0,00E+00	1,49E-08	1,45E-06	0,00E+00	-1,47E-05						
ADP-fossil resources	MJ	1,07E+02	1,43E+00	8,78E+01	1,96E+02	1,50E+00	9,19E-01	ND	0,00E+00	7,79E-02	2,95E-01	0,00E+00	-2,82E+01						
Water use ⁵⁾	m ³ e depr.	3,20E+00	7,30E-03	1,96E+00	5,16E+00	7,68E-03	5,03E-02	ND	0,00E+00	3,99E-04	8,76E-03	0,00E+00	-4,66E-01						

1) GWP = Global Warming Potential; 2) EP = Eutrophication potential. Required characterisation method and data are in kg P-eq. Multiply by 3,07 to get PO4e; 3) POCP = Photochemical ozone formation; 4) ADP = Abiotic depletion potential;

5) EN 15804+A2 disclaimer for Abiotic depletion and Water use and optional indicators except Particulate matter and Ionizing radiation, human health. The results of these environmental impact indicators shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

ADDITIONAL (OPTIONAL) ENVIRONMENTAL IMPACT INDICATORS – EN 15804+A2, EF 3.1

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Particulate matter	Incidence	4,07E-07	9,75E-09	2,09E-07	6,26E-07	1,03E-08	9,11E-09	ND	0,00E+00	5,35E-10	3,43E-09	0,00E+00	-3,12E-07						
Ionizing radiation ⁶⁾	kBq 11235 _{Pa}	1,43E+00	1,71E-03	3,48E+00	4,91E+00	1,81E-03	2,45E-03	ND	0,00E+00	9,40E-05	2,34E-03	0,00E+00	-1,90E-01						
Ecotoxicity (freshwater)	CTUe	3,62E+02	1,68E-01	2,03E+02	5,65E+02	1,77E-01	2,72E+00	ND	0,00E+00	9,19E-03	1,88E-01	0,00E+00	-7,73E+01						
Human toxicity, cancer	CTUh	6,98E-09	1,64E-11	6,30E-09	1,33E-08	1,70E-11	5,76E-11	ND	0,00E+00	8,86E-13	2,26E-11	0,00E+00	-5,46E-10						
Human tox. non-cancer	CTUh	2,26E-07	9,23E-10	3,27E-08	2,59E-07	9,74E-10	3,37E-09	ND	0,00E+00	5,06E-11	1,45E-09	0,00E+00	-1,75E-08						
SQP ⁷⁾	-	3,29E+01	1,42E+00	5,47E+02	5,81E+02	1,51E+00	1,04E+00	ND	0,00E+00	7,85E-02	5,49E-01	0,00E+00	-1,81E+02						

6) EN 15804+A2 disclaimer for Ionizing radiation, human health. This impact category deals mainly with the eventual impact of low-dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator; 7) SQP = Land use related impacts/soil quality.

USE OF NATURAL RESOURCES

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Renew. PER as energy ⁸⁾	MJ	1,84E+01	2,32E-02	5,43E+01	7,27E+01	2,44E-02	-4,18E+01	ND	0,00E+00	1,27E-03	5,13E-02	0,00E+00	-4,14E+01						
Renew. PER as material	MJ	0,00E+00	0,00E+00	4,26E+01	4,26E+01	0,00E+00	-4,26E+01	ND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Total use of renew. PER	MJ	1,84E+01	2,32E-02	9,69E+01	1,15E+02	2,44E-02	-8,45E+01	ND	0,00E+00	1,27E-03	5,13E-02	0,00E+00	-4,14E+01						
Non-re. PER as energy	MJ	1,05E+02	1,43E+00	8,55E+01	1,92E+02	1,50E+00	9,19E-01	ND	0,00E+00	7,79E-02	-1,92E+00	0,00E+00	-3,04E+01						
Non-re. PER as material	MJ	1,88E+00	0,00E+00	2,40E+00	4,27E+00	0,00E+00	-2,40E+00	ND	0,00E+00	0,00E+00	-1,88E+00	0,00E+00	0,00E+00						
Total use of non-re. PER	MJ	1,07E+02	1,43E+00	8,79E+01	1,96E+02	1,50E+00	-1,48E+00	ND	0,00E+00	7,79E-02	-3,80E+00	0,00E+00	-3,04E+01						
Secondary materials	kg	4,07E-01	6,22E-04	6,24E-01	1,03E+00	6,48E-04	8,00E-04	ND	0,00E+00	3,37E-05	3,60E-04	0,00E+00	6,91E-01						
Renew. secondary fuels	MJ	3,48E-03	7,73E-06	9,98E-01	1,00E+00	8,18E-06	5,33E-06	ND	0,00E+00	4,25E-07	1,56E-05	0,00E+00	-1,94E-03						
Non-ren. secondary fuels	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	ND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Use of net fresh water	m ³	6,80E-02	2,10E-04	3,40E-02	1,02E-01	2,21E-04	-3,81E-03	ND	0,00E+00	1,15E-05	1,80E-04	0,00E+00	-8,21E-03						

8) PER = Primary energy resources.

END OF LIFE – WASTE

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Hazardous waste	kg	1,86E+00	2,07E-03	1,80E-01	2,04E+00	2,17E-03	9,92E-03	ND	0,00E+00	1,13E-04	3,02E-03	0,00E+00	-5,28E-01						
Non-hazardous waste	kg	4,13E+01	4,13E-02	3,53E+00	4,49E+01	4,34E-02	4,13E+00	ND	0,00E+00	2,26E-03	1,25E-01	0,00E+00	-6,16E+00						
Radioactive waste	kg	3,80E-04	4,24E-07	8,37E-04	1,22E-03	4,47E-07	5,98E-07	ND	0,00E+00	2,32E-08	5,98E-07	0,00E+00	-3,94E-05						

END OF LIFE – OUTPUT FLOWS

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Components for re-use	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	ND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Materials for recycling	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,31E+00	ND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Materials for energy rec	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	ND	0,00E+00	0,00E+00	9,57E-01	0,00E+00	0,00E+00						
Exported energy	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,33E+01	ND	0,00E+00	0,00E+00	1,37E+00	0,00E+00	0,00E+00						
Exported energy – Electricity	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,01E+00	ND	0,00E+00	0,00E+00	2,06E-01	0,00E+00	0,00E+00						
Exported energy – Heat	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,13E+01	ND	0,00E+00	0,00E+00	1,16E+00	0,00E+00	0,00E+00						

ENVIRONMENTAL IMPACTS – EN 15804+A1, CML

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Global Warming Pot.	kg CO ₂ e	7,13E+00	9,86E-02	1,92E+00	9,16E+00	1,03E-01	2,06E-01	ND	0,00E+00	5,34E-03	1,70E-01	0,00E+00	-2,64E+00						
Ozone depletion Pot.	kg CFC- ₁₁ e	1,59E-07	1,58E-09	6,76E-08	2,28E-07	1,66E-09	7,98E-10	ND	0,00E+00	8,61E-11	2,49E-10	0,00E+00	-9,58E-09						
Acidification	kg SO ₂ e	3,63E-02	2,81E-04	9,15E-03	4,58E-02	2,53E-04	3,17E-04	ND	0,00E+00	1,32E-05	2,09E-04	0,00E+00	-1,44E-02						
Eutrophication	kg PO ₄ ³⁻ e	6,11E-03	6,49E-05	2,76E-02	3,37E-02	6,40E-05	1,73E-04	ND	0,00E+00	3,33E-06	3,31E-05	0,00E+00	-2,16E-03						
POCP ("smog")	kg C ₂ H ₄ e	2,73E-03	2,45E-05	8,40E-04	3,59E-03	2,38E-05	5,70E-05	ND	0,00E+00	1,24E-06	1,25E-05	0,00E+00	-1,34E-03						
ADP-elements	kg Sbe	2,39E-04	2,65E-07	7,48E-05	3,14E-04	2,79E-07	2,09E-07	ND	0,00E+00	1,45E-08	1,44E-06	0,00E+00	-1,46E-05						
ADP-fossil	MJ	7,97E+01	1,41E+00	2,46E+01	1,06E+02	1,47E+00	8,81E-01	ND	0,00E+00	7,64E-02	2,54E-01	0,00E+00	-2,57E+01						

ADDITIONAL INDICATOR – GWP-GHG

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
GWP-GHG ⁹⁾	kg CO ₂ e	7,12E+00	9,93E-02	1,93E+00	9,15E+00	1,03E-01	6,98E-02	ND	0,00E+00	5,38E-03	1,70E-01	0,00E+00	-2,66E+00						

9) This indicator includes all greenhouse gases excluding biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. In addition, the characterisation factors for the flows – CH₄ fossil, CH₄ biogenic and Dinitrogen monoxide – were updated. This indicator is identical to the GWP-total of EN 15804:2012+A2:2019 except that the characterisation factor for biogenic CO₂ is set to zero.

SCENARIO DOCUMENTATION

Manufacturing energy scenario documentation

Scenario parameter	Value
Electricity data source and quality	Electricity production, nuclear, pressure water reactor (Reference product: electricity, high voltage)
Electricity CO2e / kWh	0,0071 CO2e / kWh
District heating data source and quality	-
District heating CO2e / kWh	-

Transport scenario documentation A4

Scenario parameter	Value
Fuel and vehicle type. Eg, electric truck, diesel powered truck	Market for transport, freight, lorry >32 metric ton, EURO5 and Transport, freight, sea, container ship
Average transport distance, km	220km
Capacity utilization (including empty return) %	50%
Bulk density of transported products	-
Volume capacity utilization factor	1

Installation scenario documentation A5

Scenario information	Value
Ancillary materials for installation (specified by material) / kg or other units as appropriate	-
Water use / m ³	-
Other resource use / kg	-
Quantitative description of energy type (regional mix) and consumption during the installation process / kWh or MJ	0,018 kWh
Waste materials on the building site before waste processing, generated by the product's installation (specified by type) / kg	Paperboard 0,520kg, EUR-Flat pallet/Wood 2,860kg
Output materials (specified by type) as result of waste processing at the building site e.g. collection for recycling, for energy recovery, disposal (specified by route) / kg	Cardboard: 82% recycling, 9% incineration, 9% landfill Wood: 31% recycling, 31% incineration, 38% landfill
Direct emissions to ambient air, soil and water / kg	-

End of life scenario documentation

Scenario information	Value
Collection process – kg collected separately	-
Collection process – kg collected with mixed construction waste	1kg
Recovery process – kg for re-use	-
Recovery process – kg for recycling	0,878kg
Recovery process – kg for energy recovery	0,057kg
Disposal (total) – kg for final deposition	0,046kg
Scenario assumptions e.g. transportation	Transported 50km by lorry "Market for transport, freight, lorry >32 metric ton, EURO5

THIRD-PARTY VERIFICATION STATEMENT

EPD Hub declares that this EPD is verified in accordance with ISO 14025 by an independent, third-party verifier. The project report on the Life Cycle Assessment and the report(s) on features of environmental relevance are filed at EPD Hub. EPD Hub PCR and ECO Platform verification checklist are used.

EPD Hub is not able to identify any unjustified deviations from the PCR and EN 15804+A2 in the Environmental Product Declaration and its project report.

EPD Hub maintains its independence as a third-party body; it was not involved in the execution of the LCA or in the development of the declaration and has no conflicts of interest regarding this verification.

The company-specific data and upstream and downstream data have been examined as regards plausibility and consistency. The publisher is responsible for ensuring the factual integrity and legal compliance of this declaration.

The software used in creation of this LCA and EPD is verified by EPD Hub to conform to the procedural and methodological requirements outlined in ISO 14025:2010, ISO 14040/14044, EN 15804+A2, and EPD Hub Core Product Category Rules and General Program Instructions.

Verified tools

Tool verifier: Magaly Gonzalez Vazquez

Tool verification validity: 27 March 2025 - 26 March 2028

Imane Uald Lamkaddam as an authorized verifier for EPD Hub Limited
23.01.2026

APPENDIX

PRODUCT PORTFOLIO INCLUDED IN SCOPE

The following list of products are included in the scope of declaration.

Product number	Product name
390040	ACID-RESISTANT STEEL ROOF DRAIN, MODEL A Ø 42
390001	ACID-RESISTANT STEEL ROOF DRAIN, MODEL A Ø 75 350mm
390002	ACID-RESISTANT STEEL ROOF DRAIN, MODEL A Ø 75 600mm
390003	ACID-RESISTANT STEEL ROOF DRAIN, MODEL A Ø 75 750mm
390004	ACID-RESISTANT STEEL ROOF DRAIN, MODEL A Ø 75 1000mm
390021	ACID-RESISTANT STEEL ROOF DRAIN, MODEL A Ø 110 350mm
390022	ACID-RESISTANT STEEL ROOF DRAIN, MODEL A Ø 110 600mm
390023	ACID-RESISTANT STEEL ROOF DRAIN, MODEL A Ø 110 750mm
390024	ACID-RESISTANT STEEL ROOF DRAIN, MODEL A Ø 110 1000mm
390031	ACID-RESISTANT STEEL ROOF DRAIN, MODEL A Ø 160 350mm
390032	ACID-RESISTANT STEEL ROOF DRAIN, MODEL A Ø 160 600mm
390033	ACID-RESISTANT STEEL ROOF DRAIN, MODEL A Ø 160 750mm
390034	ACID-RESISTANT STEEL ROOF DRAIN, MODEL A Ø 160 1000mm
391001	ACID-RESISTANT STEEL ROOF DRAIN, MODEL C Ø 75 350mm
391002	ACID-RESISTANT STEEL ROOF DRAIN, MODEL C Ø 75 600mm
391003	ACID-RESISTANT STEEL ROOF DRAIN, MODEL C Ø 75 750mm
391004	ACID-RESISTANT STEEL ROOF DRAIN, MODEL C Ø 75 1000mm

Product number	Product name
391011	ACID-RESISTANT STEEL ROOF DRAIN, MODEL C Ø 90 200mm
391021	ACID-RESISTANT STEEL ROOF DRAIN, MODEL C Ø 110 350mm
391022	ACID-RESISTANT STEEL ROOF DRAIN, MODEL C Ø 110 600mm
391023	ACID-RESISTANT STEEL ROOF DRAIN, MODEL C Ø 110 750mm
391024	ACID-RESISTANT STEEL ROOF DRAIN, MODEL C Ø 110 1000mm
391031	ACID-RESISTANT STEEL ROOF DRAIN, MODEL C Ø 160 350mm
391032	ACID-RESISTANT STEEL ROOF DRAIN, MODEL C Ø 160 600mm
391033	ACID-RESISTANT STEEL ROOF DRAIN, MODEL C Ø 160 750mm
391034	ACID-RESISTANT STEEL ROOF DRAIN, MODEL C Ø 160 1000mm
393000	ACID-RESISTANT VAPOR BARRIER ROOF DRAIN Ø 110 500mm
392210	BITUMEN FLANGE FOR ROOF DRAIN 75-90
392211	BITUMEN FLANGE FOR ROOF DRAIN 110
392212	BITUMEN FLANGE FOR ROOF DRAIN C-160/A-75-160
395001, 395002, 395003, 395004	CONDENSATION INSULATION FOR MODEL A ROOF DRAIN A-75
395021, 395022, 395023, 395024	CONDENSATION INSULATION FOR MODEL A ROOF DRAIN A-110
395031, 395032, 395033, 395034	CONDENSATION INSULATION FOR MODEL A ROOF DRAIN A-160
395101, 395102, 395103, 395104	CONDENSATION INSULATION FOR MODEL C ROOF DRAIN C-75
395121, 395122, 395123, 395124	CONDENSATION INSULATION FOR MODEL C ROOF DRAIN C-110
395131, 395132, 395133, 395134	CONDENSATION INSULATION FOR MODEL C ROOF DRAIN C-160